浅谈优化计算教学的策略
在小学数学教学中,计算教学是自始至终贯穿于其中的一条主线,不仅学习时间长,而且训练机会多。如果教师本着考什么、教什么、练什么的心态进行教学,会使学生思文能力的发展受到影响。因此,在小学数学教学中,教师要依据计算教学的要求,努力挖掘其中的思文训练因素,把发展学生的思文能力作为教学的主要目标,提高计算教学的有效性。
策略之一:整体进入
现象描述:
教学“两位数乘一位数”时,教师投影呈现例题图,问:“请同学们仔细观察,图上告诉了我们哪些信息?你能根据这些信息提出一个数学问题吗?”学生思考后回答:“每头大象运20根木头,3头大象一共运了多少根木头?”教师在学生列出算式后,揭示今天要学习的内容。
我的思考:
类似这样计算教学的引入我们司空见惯,教师完全是根据教材的编排顺序,按照一个知识点、一个例题、一组练习的方式进行教学。这样的教学方式,学生由于不知道知识的来龙去脉,往往被动地跟着教师学算法、记算法、用算法,导致机械模仿多,思文含量少。所以,我们应摆脱和超越具体的每一节课教材的限制,在思考整个单元知识结构、育人价值的基础上,采用整体进入的方法,让学生先从整体上把握乘法的知识结构类型,再逐步把握部分知识,从而培养学生的整体思文能力,提高计算教学的有效性。
反思重建:
师:前面我们学习了一位数乘法,即表内乘法,今天我们学习两位数的乘法。那么,两位数的乘法会出现哪些情况呢?
生:整十数乘一位数,两位数乘一位数,两位数乘两位数。
师:今天,我们学习整十数乘一位数。
……
课堂中,采用整体进入方法进行教学,可用以下两种方式:(1)如果学生前面有类似的学习经验,可以提醒学生根据两位数的加法来推想乘法可能会有哪些类型。如上述教学中,教师提问“那么,两位数的乘法会出现哪些情况呢”,学生回答有困难的话,教师可提示:“请同学们回顾一下,我们前面学过的两位数加法有哪些类型?”在学生回答的基础上,教师引导学生猜想两位数乘一位数有哪些类型。(2)如果学生前面没有接触过这样的学习方式,教师可列举一些数,让学生根据材料写算式,然后进行分类,引导学生了解两位数乘法的类型。如教师出示20、30、3、5、12、35等数,请学生每次选两个数组成乘法算式,然后将写出的乘法算式进行分类,在分类的过程中明确两位数乘一位数的类型。这样教学,培养了学生的有序思文,渗透了分类等数学思想方法。
策略之二:合理想象
现象描述:
教学“9的乘法口诀”时,在师生共同找出有关9的乘法口诀算式后,教师通过各种形式的练习,让学生记住9的乘法口诀。在这个过程中,学生或齐读,或小组说,或个别说。
我的思考:
9的乘法口诀共有9句,要一下子记住这些口诀,对于二年级的学生来说,单靠死记硬背显然是不可取的。其实,看似简单的计算中可以发掘出很多有意思的规律。通过师生之间的有效互动,可充分发挥学生的想象力,让他们大胆合理想象,突破原有知识的限制,尽可能地从不同角度、不同方向去思考问题,从而提高计算教学的有效性。
反思重建:
那么,如何引领学生巧记口诀,发展思文呢?通过找规律这一途径,即对一列9的乘法算式的整体观察,学生能发现多个规律:(1)按这样的排列,得数每个多9。数学知识一环扣一环,教材采用螺旋上升的方式编排,这样易于学生找到新旧知识的“生长点”,找出新旧知识之间的区别,便于归纳出规律。(2)得数的个位数字、十位数字相加,均等于9。(3)得数的个位数字是9、8、7、6……变化,十位数字是1、2、3……6、7、8变化,且十位数字比这道算式的乘数少1。(4)得数与几十相比:1个9比10少1,2个9比20少2,3个9比30少3……(5)得数9、18、27……72、81按顺序一单数、一双数出现。(6)得数成对比变化,如18和81、27和72、36和63、45和54等。几道算式中竟藏有这么多的秘密,学生面对自己的发现又惊又喜,很快便记住了9的乘法口诀。这样教学,在学生寻找规律的同时,培养了他们的发散性思文。
策略之三:数形结合
http://www.751com.cn/ 现象描述:
教学“十几减9”时,尽管课堂上学生会出现各种算法,如“想加算减”“平十法”“破十法”等,但许多教师考虑到“想加算减”更有利于学生形成计算技能,便会让学生简单地罗列算法并进行优化,然后通过不断反复操练“想加算减”的方法,使学生达到计算的熟练程度。
我的思考:
“想加算减”这种算法固然沟通了加减法之间的联系,但不难发现,在这样的过程中,学生只不过是在运用已学过的加法知识解决减法口算问题,学生内部的心智活动很少,思文得到的训练不多,只是便于学生形成相应的计算技能。相比“想加算减”的算法,“平十法”和“破十法”对于培养学生思文的深刻性与灵活性更具意义。比如13-9,采用“平十法”,计算者就需要在头脑中经过这么一个过程:把9分成3和6,先从13里去掉3,再从10里面去掉6。这里需要理解“为什么把9分成3和6”的问题,使学生在一系列问题的思考过程中明晰算理。如采用“破十法”,则在头脑中必须经历这样一个过程:把13分成10和3,先算10减9等于1,再把1和3合起来是4。很明显,这种数形结合的思考过程相比“想加算减”算法而言,心智活动要复杂得多。在这个过程中,计算者要将计算分割成几个小的步骤,要将各种信息在头脑中进行合理的拆分、拼组等,并要在短时间内完成所有的步骤,得出正确的结果,这是一种很高级的心理活动。计算者正是通过这样的心理活动,锻炼了自己思文的深刻性,发展了创造性思文。
浅谈优化计算教学的策略下载如图片无法显示或论文不完整,请联系qq752018766