毕业论文论文范文课程设计实践报告法律论文英语论文教学论文医学论文农学论文艺术论文行政论文管理论文计算机安全
您现在的位置: 毕业论文 >> 论文 >> 正文

热电偶高温测量与大屏幕显示技术 第4页

更新时间:2008-12-24:  来源:毕业论文

压器具有稳压精度高、工作稳定可靠、外围电路简单、体积小、重量轻等显箸优点,在
各种电源电路中得到了普遍的应用。常用的集成稳压器有:金属圆形封装、金属菱形封装、塑料封装、带散热板塑封、扁平式封装、双列直插式封装等。在电子制用中应用较多的是三端固定输出稳压器。

78XX系列集成稳压器是常用的固定正输出电压的集成稳压器,输出电压有5V、6V、9V、12V、15V、18V、24V等规格,最大输出电流为1.5A。它的内部含有限流保护、过热保护和过压保护电路,采用了噪声低、温度漂移小的基准电压源,工作稳定可靠。78XX系列集成稳压器为三端器件:1脚为输入端,2脚为接地端,3脚为输出端,使用十分方便。

五,输入通道的介绍
(一) 输入通道组成
 输入通道由K型热电偶,具有冷端补偿的单片K型热电偶放大器与数字转换器MAX6675及键盘等组成。

(二) 具有冷端补偿的单片K型热电偶放大器与数字转换器MAX6675介绍
将热电偶应用在基于单片机的嵌入式系统领域时,存在着以下几方面的问题。①非线性:热电偶输出热电势与温度之间的关系为非线性关系,因此在应用时必须进行线性化处理。②冷补偿:热电偶输出的热电势为冷端保持为0℃时与测量端的电势差值,而在实际应用中冷端的温度是随着环境温度而变化的,故需进行冷端补偿。③数字化输出:与嵌入式系统接口必然要采用数字化输出及数字化接口,而作为模拟小信号测温元件的热电偶显然法直接满足这个要求。因此,若将热电偶应用于嵌入式系统时,须进行复
杂的信号放大、A/D转换、查表线性线、温度补偿及数字化输出接口等软硬件设计。如
果能将上述的功能集成到一个集成电路芯片中,即采用单芯片来完成信号放大、冷端补偿、线性化及数字化输出功能,则将大大简化热电偶在嵌入式领域的应用设计。Maxim公司新近推出的MAX6675即是一个集成了热电偶放大器、冷端补偿、A/D转换器及SPI串口的热电偶放大器与数字转换器。

1, 性能特点
MAX6675的主要特性如下:
①简单的SPI串行口温度值输出;    ②0℃~+1024℃的测温范围;
③12位0.25℃的分辨率;           ④片内冷端补偿;
⑤高阻抗差动输入;                ⑥热电偶断线检测;
⑦单一+5V的电源电压;             ⑧低功耗特性;
⑨工作温度范围-20℃~+85℃;      ⑩2000V的ESD信号。

该器件采用8引脚SO帖片封装。引脚排列如图5所示,引脚功能如表2所列。

表2                      MAX6675引脚功能
引脚 名称 功   能
1 GND 接地端
2 T- K型热电偶负极
3 T+ K型热电偶正极
4 VCC 正电源端
5 SCK 串行时钟输入
6 CS 片选端,CS为低时启动串行接口
7 SO 串行数据输出
8 N.C. 空引脚

2, 工作原理
MAX6675的内部结构如图6所示。该器件是一复杂的单片热电偶数字转换器,内部具有信号调节放大器、12位的模拟/数字化热电偶转换器、冷端补偿传感和校正、数字控制器、1个SPI兼容接口和1个相关的逻辑控制。
2.1 温度变换  
 MAX6675是通过冷端补偿检测和校正周围温度变化的。该器件可将周围温度通过内部的温度检测二极管转换为温度补偿电压,为了产生实际热电偶温度测量值,MAX6675从热电偶的输出和检测二极管的输出测量电压。该器件内部电路将二极管电压和热电偶电压和送到ADC中转换,以计算热电偶的热端温度。当热电偶的冷端与芯片温度相等时,MAX6675可获得最佳的测量精度。因此在实际测温应用时,应尽量避免在MAX6675附近放置发热器件或元件,因为这样会造成冷端误差。MAX6675内部具有将热电偶信号转换为与ADC输入通道兼容电压的信号调节放大器,T+和T-输入端连接到低噪声放大器A1,以保证检测输入的高精度,同时使热电偶连接导线与干扰源隔离。热电偶输出的热电势经低噪声放大器A1放大,再经过A2电压跟随器缓冲后,被送至ADC的输入端。在将温度电压值转换为相等价的温度值之前,它需要对热电偶的冷端温度进行补偿,冷端温度即是MAX6675周围温度与0℃实际参考值之间的差值。对于K型热电偶,电压变化率为41μV/℃,电压可由线性公式Vout=(41μV/℃)×(tR-tAMB )近似热电偶的特性。上式中,Vout为热电偶输出电压(mV),tR是测量点温度;tAMB是周围温度。2.2 冷端补偿
热电偶的功能是检测热、冷两端温度的差值,热电偶热节点温度可在0℃~+1023.75℃范围变化。冷端即安装MAX6675的电路板周围温度,比温度在-20℃~+85℃范围内变化。当冷端温度波动时,MAX6675仍能精确检测热端的温度变化。2.3 热补偿
在测温应用中,芯片自热将降低MAX6675温度测量精度,误大小依赖于MAX6675封装的热传导性、安装技术和通风效果。为降低芯片自热引起的测量误差,可在布线时使用大面积接地技术提高MAX6675温度测量精度。2.4 噪声补偿
MAX6675的测量精度对电源耦合噪声较敏感。为降低电源噪声影响,可在MAX6675的电源引脚附近接入1只0.1μF陶瓷旁路电容。    2.5 SPI串行接口
MAX6675采用标准的SPI串行外设总线与MCU接口,且MAX6675只能作为从设备。MAX6675 SO端输出温度数据的格式如图7所示,MAX6675 SPI接口时序如图8所示。MAX6675从SPI串行接口输出数据的过程如下:MCU使CS变低并提供时钟信号给SCK,由SO读取测量结果。CS变低将停止任何转换过程;CS变高将启动一个新的转换过程。一个完整串行接口读操作需16个时钟周期,在时钟的下降沿读16个输出位,第1位和第15位是一伪标志位,并总为0;第14位到第3位为以MSB到LSB顺序排列的转换温度值;第2位平时为低,当热电偶输入开放时为高,开放热电偶检测电路完全由MAX6675实现,为开放热电偶检测器操作,T-必须接地,并使能地点尽可能接近GND脚;第1位为低以提供MAX6675器件身份码,第0位为三态。3 .MAX6675冷端温度补偿和测量原理
MAX6675的内部结构如图6所示。该器件是1个复杂的单片热电偶数字转换器,内部具有信号调节放大器、12位的模拟/数字化热电偶转换器、冷端补偿传感和校正、数字控制器、1个SPI兼容接口和1个相关的逻辑控制。内部电路主要包括8部分:

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] 下一页

热电偶高温测量与大屏幕显示技术 第4页下载如图片无法显示或论文不完整,请联系qq752018766
设为首页 | 联系站长 | 友情链接 | 网站地图 |

copyright©751com.cn 辣文论文网 严禁转载
如果本毕业论文网损害了您的利益或者侵犯了您的权利,请及时联系,我们一定会及时改正。