基于JPG标准的图像压缩算法代码论文|图形图像|免费论文
游程编码
游程编码又称“运行长度编码”或“行程编码”,是一种统计编码,该编码属于无损压缩编码。对于二值图有效。
行程编码的基本原理是:用一个符号值或串长代替具有相同值的连续符号(连续符号构成了一段连续的“行程”。行程编码因此而得名),使符号长度少于原始数据的长度。 例如:5555557777733322221111111 行程编码为:(5,6)(7,5)(3,3)(2,4)(l,7)。可见,行程编码的位数远远少于原始字符串的位数。
在对图像数据进行编码时,沿一定方向排列的具有相同灰度值的像素可看成是连续符号,用字符串代替这些连续符号,可大幅度减少数据量。
行程编码分为定长行程编码和不定长行程编码两种类型。
行程编码是连续精确的编码,在传输过程中,如果其中一位符号发生错误,即可影响整个编码序列,使行程编码无法还原回原始数据。
2.6 哈夫曼编码
哈夫曼(Huffman)编码是一种常用的压缩编码方法,是Huffman于1952年为压缩文本文件建立的。它的基本原理是频繁使用的数据用较短的代码代替,较少使用的数据用较长的代码代替,每个数据的代码各不相同。这些代码都是二进制码,且码的长度是可变的。举个例子:假设一个文件中出现了8种符号S0,S1,S2,S3,S4,S5,S6,S7,那么每种符号要编码,至少需要3比特。假设编码成000,001,010,011,100,101,110,111(称做码字)。那么符号序列S0S1S7S0S1S6S2S2S3S4S5S0S0S1编码后变成000001111000001110010010011100101000000001,共享了42比特。我们发现S0,S1,S2这三个符号出现的频率比较大,其它符号出现的频率比较小,如果我们采用一种编码方案使得S0,S1,S2的码字短,其它符号的码字长,这样就能够减少占用的比特数。例如,我们采用这样的编码方案:S0到S7的码字分别01,11,101,0000,0001,0010,0011,100,那么上述符号序列变成011110001110011101101000000010010010111,共享了39比特,尽管有些码字如S3,S4,S5,S6变长了(由3位变成4位),但使用频繁的几个码字如S0,S1变短了,所以实现了压缩。
上述的编码是如何得到的呢?随意乱写是不行的。编码必须保证不能出现一个码字和另一个的前几位相同的情况,比如说,如果S0的码字为01,S2的码字为011,那么当序列中出现011时,你不知道是S0的码字后面跟了个1,还是完整的一个S2的码字。我们给出的编码能够保证这一点。
下面给出具体的Huffman编码算法。
(1) 首先统计出每个符号出现的频率,上例S0到S7的出现频率分别为4/14,3/14,2/14,1/14,1/14,1/14,1/14,1/14。
(2) 从左到右把上述频率按从小到大的顺序排列。
(3) 每一次选出最小的两个值,作为二叉树的两个叶子节点,将和作为它们的根节点,这两个叶子节点不再参与比较,新的根节点参与比较。
(4) 重复(3),直到最后得到和为1的根节点。
将形成的二叉树的左节点标0,右节点标1。把从最上面的根节点到最下面的叶子节点途中遇到的0,1序列串起来,就得到了各个符号的编码。
上面的例子用Huffman编码的过程如图9。1所示,其中圆圈中的数字是新节点产生的顺序。可见,我们上面给出的编码就是这么得到的。
图2-1 Huffman编码的示意图
产生Huffman编码需要对原始数据扫描两遍。第一遍扫描要精确地统计出原始数据中,每个值出现的频率,第二遍是建立Huffman树并进行编码。由于需要建立二叉树并遍历二叉树生成编码,因此数据压缩和还原速度都较慢,但简单有效,因而得到广泛的应用。
2.7 系统开发理论流程
2.7.1 颜色转换及采样
(1)颜色转换:对BMP图像中的颜色数据进行由RGB一YCbCr的转换,Y表示亮度,Cb Cr分别表示蓝色度和红色度。转换公式:
Y=0.2990R+0.5870G+0.1140B
Cb=-0.1687R-0.3313G+0.5000B
Cr=0.5000R-0.4187G-0.0813B
这样转换以后就得到三个新的基色值,对这三个基色值来讲,都可以当作一个独立的图像平面来进行压缩编码。
(2)采样:颜色转换后,保留每一点的亮度值Y,而色度值Cb Cr则是每两点保留一点,在图像的行和列方向上都可执行颜色采样。如果采用的是1:1:1的采样比例,不用抽样。若采用的采样比是行列方向都是2:1:1,在行方向,每两点保留一点,列方向也是每两点保留一点,这样如果假设原来的CbCr矩阵大小为M*S,则经过2:1:1抽样之后成了M/2*s/2=1/4M*S,只有原来的1/4了,图像大大缩小,如果想减小图像的失真度,则可行方向不抽样或列方向不抽样。
2.7.2 二文DCT变换
二文DCT变换公式为:
F(u,v)=
注:x,y代表图像数据矩阵中的某个数据值的坐标位置
f(x,y)指图像数据矩阵中该点的资料值
u,v指经过DCT变换后矩阵中的某数值点的坐标位置,在这里u=x,v=y
F(u,v)指经过DCT变换后该坐标点的资料值。
当u=0,v=0时,C(u)C(v)=1.414/2
当u>0,v>0时,C(u)C(v)=1,经过变换后的资料值F(u,v)称为频率系数(或称DFT系数)。
2.7.3 量化
量化过程实质上是把亮度数据Y和色度数据Cb/Cr由时域转变成频域(DCT变换)并滤除高频分量的过程,由于人眼对高频分量不敏感,所以可以滤除高频分量,经过量化以后的每一个8*8数据块中,左上角第一个元素数据值为直流分量,称为DC,其余63个资料为交流分量,称为AC。
2.7.4 游程编码,ZIGZAG扫描
经过量化后的DCT系数矩阵,除DC值一般不为零外,AC系数大多是在零点附近的浮点数。经过取整以后,每一个8*8块中,有大量的AC系数的值为0。为了把尽可能多的其值为0的AC系数串在一起,以利于AC编码及提高压缩比,还必须把YCbCr矩阵中的每一个8*8块中的64个元素进行“之”字形排序(这样就可以做到把尽可能多的0串在一起)。其过程示意图如下。
图2-2 量化后的系数按Z字型扫描
箭头方向表示“之”字形排序以后原8*8中元素的新的位置顺序。
2.7.5 哈夫曼编码
哈夫曼编码是一种一致性编码法(又称"熵编码法"),用于数据的无损耗压缩。它使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。编码表是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] ... 下一页 >>
VC++基于JPG标准的图像压缩算法+代码+论文 第7页下载如图片无法显示或论文不完整,请联系qq752018766