量子遗传算法优化神经网络及其在MIMO系统信号检测中的应用研究 第18页
是自适应BP的计算复杂度较大;(2) 图中所示各类算法在8发8收条件下的性能曲线与在4发4收条件下的性能曲线变化趋势基本一致,但是在8发8收条件下的性能曲线比在4发4收条件下的性能曲线下降的快,也就是说在8发8收条件下的检测性能较好一些;(3) 在4发4收条件下自适应BP与基于聚类算法的RBF,它们的检测性能都比MMSE有明显的提高;(4) 在8发8收条件下,在低信噪比时,自适应BP与基于聚类算法的RBF,它们的检测性能依然比MMSE好,但随着信噪比的增加,这种优势越来越小,甚至在高信噪比时,自适应BP算法的检测性能已经不如MMSE好。
表4-1 自适应BP与三种RBF网络实验控制参数
自适应BP RBF- OLS RBF-梯度 RBF-聚类
训练样本数据长度 150 150 150 150
测试样本数据长度 10240 10240 10240 10240
训练次数 20000 20000
学习参数 学习速率:0.001
动量因子:0.5 隐节点扩展系数:1.0 隐节点数据中心学习系数:0.001
隐节点扩展常数学习系数:0.001
隐节点输出权值学习系数:0.001 隐节点重叠常数:1.0
目标误差 0.002 0.002 0.002
图4-8 4发4收QPSK调制时的自适应BP算法检测性能
图4-9 4发4收QPSK调制时的RBF-梯度算法检测性能
图4-10 4发4收QPSK调制时的RBF-OLS算法检测性能
图4-11 4发4收QPSK调制时的RBF-聚类算法检测性能
图4-12 8发8收QPSK调制时的自适应BP算法检测性能
图4-13 8发8收QPSK调制时的RBF-梯度算法检测性能
图4-14 8发8收QPSK调制时的RBF-OLS算法检测性能
图4-15 8发8收QPSK调制时的RBF-聚类算法检测性能
4.6 基于量子遗传算法优化神经网络的MIMO系统信号检测方案及性能测试
4.6.1 基于量子遗传算法优化神经网络的MIMO系统信号检测方案
神经网络算法的实现过程为输入信号从输入层经隐含层逐层向前传播,最后传到输出层,每一层神经元的状态仅影响到下一层神经元的状态,从而建立了输入与输出之间的全局非线性映射关系,然而网络训练选取不同的起始点可能得到不同的极值点,难以保证得到的就是全局极值点。
为了克服神经网络的这一不足,需要寻找一种具有全局搜索能力的算法,用该算法来确定全局极值的所在范围,在该范围内再使用神经网络,可以有效的防止神经网络在搜索过程中陷入局部极值,能够得到实验者满意的最优解。遗传算法是多点多路径搜索,具有全局搜索能力,而量子遗传算法(QGA)由于采用量子比特编码来表示染色体,用量子交叉和量子旋转门变异来完成进化搜索,具有种群规模小而不影响算法性能、同时兼有开发和探索的能力、收敛速度快等特点,2.4节的实验结果已经证明了QGA性能明显优于经典GA,4.4.2节的实验结果又进一步说明了QGA的MIMO系统信号检测性能优于经典GA的检测性能。
本文选用QGA对神经网络进行优化,第三章研究了这种混合优化算法,且实验表明了用QGA优化过的神经网络与传统神经网络在算法性能上有较明显的提高。下面在第三章研究内容的基础上,设计基于量子遗传算法优化神经网络的MIMO系统信号检测器,该检测器的优化过程分为两个阶段:QGA在大范围的全局“粗搜索”和神经网路的局部“细搜索”。首先应用QGA在解空间进行全局搜索,找到一个较好的搜索结果,然后将此结果作为神经网路的初始值,再利用网络方程寻找全局最优解。由于QGA给神经网络提供了较好的初始值,故能够使神经网络快速收敛到最优解,避免了由初始值的随机选取而带来的检测误码,使检测性能得到进一步提高。
图4-16为设计的组合优化的MIMO系统信号检测方案。在接收端,每根天线接收到从 根不同天线发送并经过MIMO信道线性叠加的信号,检测部分先用4.4.1节介绍的量子遗传算法检测方案,再把检测输出值作为神经网络的输入信号,网络端检测采用4.5.1介绍的神经网络检测模型,神经网络检测算法分别用3.2.2节介绍的自适应BP神经网络以及3.3.2节的基于聚类算法RBF神经网络,最后将并行的数据流检测解调后通过并/串
<< 上一页 [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] ... 下一页 >>
量子遗传算法优化神经网络及其在MIMO系统信号检测中的应用研究 第18页下载如图片无法显示或论文不完整,请联系qq752018766