耐热芳杂环高分子材料及其模型化合物的合成及水解 第4页
图3-5 MSPPT在250C的高温水中水解20小时后的水溶液的HPCE谱图,(a)水解后的水溶液,(b)将苯甲酸加入水解后的水溶液的混合样品。(毛细管柱:75m25cm;缓冲溶液:25 mmol/L 的硼砂(pH=9.20),电泳电压:15 kV;进样方式:5秒压力进样;;检测波长:214 nm;温度:25C)
从图3-5(a)可以看出,MSPPT在250C的高温水中水解20小时后的水溶液仅在tR=2.26 min处出现一个单峰,这说明MSPPT的水解产物比较单一。在水解样品中加入苯甲酸标准样品的标准加入法分析谱图如图3-5(b)所示。从图3-5(b)中可以看出,在加入苯甲酸前后其HPCE谱图上并没有出现新的峰而只是tR=2.26 min的峰变强。
图3-6是MSPPT在250C的水中水解20小时后的水解液的HPLC谱图。其结果和HPCE的分析结果一致,图3-6中MSPPT的水解产物也仅在tR=5.2 min处出现一个单峰,通过外标法分析该峰的保留时间与苯甲酸标准样品的在同样色谱条件下的保留时间相同。结 论
1. 采用共振多光子电离和Ion-dip检测两种方法,在n*= 5-7区域内,观察到文献未报导过的CaCl的5个新2+实贯穿里德堡态。结果对CaCl里德堡态结构的完整分析并建立CaCl电子态完整的图像具有重要意义。通过理论分析、论证判定这些里德堡态的预解离来源于和一个2+连续态的相互作用。利用实验观测预解离线宽拟合出与里德堡态相互作用的2+连续态势能的曲线,后者能够满意地解释里德堡态的预解离行为。
2. 观测到具有反常小转动常数的里德堡态,根据其能量特征及理论分析结果判定它们是实非贯穿里德堡态的碎片。
3. 利用微扰增强的光学-光学双共振荧光探测方法,首次观测并归属了Na2分子的双电子激发价态13g-并归属了其v=0~57 振动能级,它们覆盖了整个势阱的99%以上。13g-态是碱金属双原子分子电离限以下唯一的3g-对称性的三重态因而是比较纯的双电子激发态。13g-态在电离限以上的能级没有体现出很强的自电离的倾向,反映了双电子激发态不同于里德堡态的独特性质。
4. 利用从头计算给出的理论势能曲线对33g和43g+态预解离机理进行的分析表明,23g和33g之间的静电相互作用,引起33g态能级在3s+3d离解限以上强烈的预解离,其能级寿命缩短到只有几百个飞秒。43g+态在3s+3d离解限以上的能级的预解离则主要是通过和23g连续态的直接相互作用以及通过与被23g态的连续能级预解离的33g能级的相互作用(偶然预解离)。理论预测与实验观测结果吻合得很好。
5. 本论文发展了双原子分子高电子激发态光谱的归属和分析方法,为CaCl里德堡态和Na2高激发态补充了重要光谱数据。这些结果对阐明双原子分子的结构化学和量子化学基本原理具有重要意义。
参考文献
[1] Elidrissi M C, Roney A, Frigon C, et al. Measurements of total kinetic-energy released to the N=2 dissociation limit of H2 - evidence of the dissociation of very high vibrational Rydberg states of H2 by doubly-excited states. Chem. Phys. Lett. 1994, 224:260-266
[2] Yiannopoulou A, Urbanski K, Lyyra A M, et al. Perturbation facilitated optical-optical double resonance spectroscopy of the 2 3g+, 3 3g+, and 4 3g+ Rydberg states of 7Li2. J. Chem. Phys. 1995, 102:3024-3031
[3] Tsai C C, Bahns J T, and Stwalley W C. Observation of Na2 Rydberg states and autoionization resonances by high-resolution All-Optical Triple-Resonance spectroscopy. Chem. Phys. Lett. 1995, 236:553-557
[4] Merkt F, Mackenzie S R, Softley T P. Rotational autoionization dynamics in high Rydberg states of nitrogen. J. Chem. Phys. 1995, 103:4509-4518
[5] Mellinger A,Vidal C R, Jungen Ch. Laser reduced fluorescence study of the carbon-monoxide nd triplet Rydberg series - experimental results and Multichannel Quantum-Defect Analysis. J. Chem. Phys. 1996, 104:8913-8921
[6] Bixon M, Jortner J. The dynamics of predissociating high Rydberg states of NO. J. Chem. Phys. 1996,105:1363-1382
[7] Cossartmagos C, Lefebvrebrion H, and Jungen M. Rotational band contour analysis of nf Rydberg complexes of CO2 and the determination of the first ionization-potential. Mol. Phys. 1995, 85:821-838
[8] Warken M. Perturbation-theory for electronic excited-states - the low-lying Rydberg states of water. J. Chem. Phys. 1995, 103:5554-5564
[9] Matsui H, Mayer E E, and Grant E R. Bend-stretch Fermi resonance in NO2+ as observed in the 2-photon absorption spectroscopy of the 3p 2u+ Rydberg state of NO2. J. Mol. Spectrosc. 1996, 175: 203-214
[10] Herzberg G and Spinks J W T. Atomic spectra and atomic structure. New York: Dover publications, 1944. 55-64
[11] Herzberg G and Jungen Ch. Rydberg series and ionization potential of the H2 molecule. J. Mol. Spectrosc. 1972, 41:425-486
[12] Jungen Chand Atabek O. Rovibronic interactions in the photoabsorption spectrum of molecular hydrogen and deuterium: an application of multichannel quantum defect methods. J. Chem. Phys. 1977,66:5584-5609.
[13] Greene C and Jungen Ch. Molecular applications of quantum defect theory. Advances in Atomic and Molecular Physics. 1985, 21:51-121
[14] Arif M, Jungen Ch, and Roche AL. The Rydberg spectrum of CaF and BaF: calculation by R-matrix and generalized quantum defect theory. J. Chem. Phys. 1997, 106:4102-4118
[15] Lewis B R, Banerjee S S, and Gibson S T. Asymmetric line-shapes in the indirect predissociation of the F1g+ Rydberg state of O2. J. Chem. Phys. 1995, 102:6631-6640
[16] Childs W J, Goodman L S, Nielsen U, et al. Electric-dipole moment of CaF (X2+)by molecular beam, laser-rf, double-resonance study of Stark splittings. J. Chem. Phys. 1984, 80:2283-2287
[17] Selected Values of Electric Dipole Moments for Molecules in the Gas Phase. In: Weast R C, eds. CRC handbook of Chemistry and Physics, 55th edition. Clevland: CRC press, 1975: E-63
[18] Rice S F, Martin H, and Field R W. The electronic structure of the calcium monohalides. A ligand field approach. J. Chem.Phys. 1985, 82:5023-5034
[19] Berg J M, Murphy J E, Harris N A, et al. Observation and analysis of core-penetrating Rydberg states of calcium monofluoride. Phys. Rev. A, 1993, 48:3012-3029
[20] Murphy J E, Berg J M, Merer A J, et al. Rydberg states and ionization potential of calcium monofluoride. Phys. Rev. Lett.1990, 65:1861-1864.
[21] Harris N A and Jungen Ch. Rydberg states of calcium fluoride. Phys. Rev. Lett. 1993, 70:2549-2552
[22] Jabubek Z J and Field R W.Core-penetrating Rydberg series of BaF: s~p~d~f supercomplexes. Phys. Rev. Lett. 1994, 72:2167-2170
[23] 马辉, 李俭, 刘耀明, 等. 利用REMPI方法测量BaF高里德堡系列光谱. 化学物理学报 1995, 8:308-311
[24] Carlson N W, Taylor A J, Jones K M, et al. Two-step polarization-labeling spectroscopy of excited states of Na2. Phys. Rev. A 1981, 24:822-834
[25] Taylor A J, Jones K M and Schalow A L. Scanning pulsed-polarization spectrometer applied to Na2. J. Opt. Soc. Am. 1983,73:994-998
[26] Taylor A J, Jones K M and Schawlow A L. A study of the excited 1g+ states in Na2. Opt. Commun. 1981, 39:47-50
[27] Shimizu K and Shimizu F. Laser induced fluorescence spectra of the a3u-X1g+ band of Na2 by molecular beam. J. Chem. Phys. 1983, 78:1126-1131
[28] Atkinson J B, Becker J, and Demtröder W. Experimental observation of the a3u state of Na2. Chem. Phys. Lett. 1982, 87:92-97
[29] Effantin C, d'Incan J, Ross A J, et al. Laser-induced fluorescence spectra of Na2 the (3s,3p) 1g+, (3s,3p) 1g and (3s,4s) 1g+ states. J.Phys. B 1984, 17:1515-1523
[30] Tsai C C, Whang T J, Bahns J T et al. The 31g+ “shelf” state of Na2. J. Chem. Phys. 1993, 99:8480-8488
[31] Tsai C C, Bahns J T and Stwalley W C. Optical-optical double-resonance spectroscopy of the 51g+ shelf state of Na2 using an ultrasensitive ion detector. J. Chem. Phys. 1994, 100:768-774
[32] Li Li and Field R W. Direct observation of high-lying 3g states of the Na2 molecule by optical-optical double-resonance.J.Phys. Chem. 1983, 87: 3020-3022
[33] Whang T J, Tsai C C, Stwalley W C, et al. Spectroscopic study of the Na223g+ state by cw perturbation-facilitated optical-optical double-resonance spectroscopy. J. Mol. Spectrosc. 1993, 160:411-421
[34] Whang T J, Stwalley W C, Li Li, et al. Observatoins of the 3(3d)3g+ state of Na2. J. Mol. Spectrosc. 1992, 155:184-194
[35] Whang T J, Stwalley W C, Li Li, et al. The Na2 43g+ state. J. Mol. Spectrosc. 1993,157:544-547
[36] Li Li and Field RW. CW optical-optical double resonance studies of the 23g, 33g, 43g+ and 13g Rydberg states ofNa2. J. Mol. Spectrosc. 1986, 117:245 -282
[37] Xie X, Field RW, Li Li, et al. Absolute vibrational numbering of the Na2 23g state. J. Mol. Spectrosc. 1989, 134:119-128辣-文^论'文.网
http://www.751com.cn[38] Li Li, Lyyra AM, and Stwalley W C. Absolute vibrational numbering and molecular constants of the Na2 13g state. J. Mol. Spectrosc. 1989, 134:113-118
[39] Whang T J, Lyyra A M, Stwalley W C, et al. The Na2 23g state:CW perturbation-facilitated optical-optical double resonance spectroscopy. J. Mol. Spectrosc. 1991,149:505-511
[40] Torring T, Ernst W E, and Kandler J. Energies and electric diple moments of the low lying electronic states of the alkaline earth monohalides from an electrostatic polarization model. J. Chem. Phys. 1989, 90:4927-4932
[41] Guo B, Zhang K Q, and Bernath P F. High-resolution Fourier transform infrared emission spectra of barium monofluoride. J. Mol. Spectrosc. 1995, 170:59-74.
[42] Ernst W E, Kindt S, Nair K P R, et al. Determination of the ground-state dipole moment of CaCl from molecular-beam laser-microwave double-resonance measurements. Phys. Rev. A 1984, 29:1158-1163.
[43] Ernst W E, Kändler J, and Törring T. Hyperfine structure and electric dipole moment of BaF X2+. J. Chem. Phys. 1986, 84:4769-4773.
[44] Childs W J, Goodman L S, Nielsen U, et al. Electric-dipole moment of CaF (X2+)by molecular beam, laser-rf, double-resonance study of Stark splittings. J. Chem. Phys. 1984, 80:2283-2287.
[45] Komatsu M, Ebata T, and Mikami N. Rotational analysis of n=4-7 Rydberg states of CO observed by ion-dip spectroscopy.J. Chem. Phys. 1993, 99:9350-9365.
[46] Komatsu M, Ebata T, Maeyama T, and Mikami N. Rotational structure and dissociation of the Rydberg states of CO by ion-dip spectroscopy. J. Chem. Phys. 1995,103:2420-2435.
[47] Pribble R N and Zwier T S. Size-specific infrared-spectra of benzene-(H2O)n clusters (n=1-7) - evidence of noncyclic (H2O)n structures. Science 1994, 265:75-79.
[48] Pribble R N, Garret A W, Haber K, et al. Resonant ion-dip Infrared spectroscopy of benzene-H2O and benzene-HOD. J. Chem. Phys. 1995,103: 531-544.
[49] Earls L T. Intensities in 2-2 transitions in diatomic molecules.Phys. Rev. 1935, 48:423-424.
[50] Rice S F, Martin H, and Field R W. The electronic structure of the calcium monohalides. A ligand field approach.J. Chem.Phys. 1985, 82:5023-5034
[51] Lefebre-Brion H and Field R W. Perturbation in the Spectra of Diatomic Molecules. New York: Academic Press, 1986.101-120
[52] Kato H and Baba M. Dynamics of excited molecules: predissociation. ChemRev. 1995, 95:2311-2349.
[53] Li Li and Li M. Deperturbation of the Na2 43g+ v=4 ~ 33g v=6 and 43g+ v=14 ~ 23g v=68 interactions. J. Mol. Spectrosc. 1995,173:25-36
[54] Xie X, Field RW, Li Li, et al. Absolute vibrational numbering of the Na2 23g state. J. Mol. Spectrosc. 1989, 134:119-128
[55] Magnier S, Millie Ph, Dulieu O, et al. Potential curves for the ground and excited states of the Na2 molecule up to the (3s+5p) dissociation limit: results of two different effective potential calculations. J. Chem. Phys. 1994, 98:7113-7125
[56] Ji B, Tsai C C, Li Li, et al. Determination of the long-range potential and dissociation energy of the 13g state of Na2. J. Chem. Phys. 1995, 103: 7240-7254
[57] Li J, Liu Y M, Gao H, et al. Pulsed Perturbation Facilitated OODR Spectroscopy of the 4,7,10 3g Rydberg States of Na2. J. Mol. Spectrosc. 1996, 175:13-20
上一页 [1] [2] [3] [4]
耐热芳杂环高分子材料及其模型化合物的合成及水解 第4页下载如图片无法显示或论文不完整,请联系qq752018766