经过仔细研究分析,我们认为系统的结构框图1.1如下所示:
根据题目要求,我们分以下三部分进行方案设计与论证
1.1主控单元
方案一:采用80C51系列单片机,但其与外围设备的接口电路较为复杂。
方案二:采用凌阳SPCE061A单片机。它中断资源丰富,而且内置了在线仿真、编程接口,可方便地实现在线调试。
经过比较后采用方案二。
1.2 放大器部分 建壮造价咨询公司实习报告
程控放大器的增益,一般有两种途径,一种是改变反相端的输入电阻,另一种是改变负反馈电阻阻值。
方案一:采用模拟开关或继电器作为开关,构成梯形电阻网络,单片机控制继电器或模拟开关的通断,从而改变放大器的增益。此方案的优点在于简单,缺点是电阻网络的匹配难以实现,调试很困难。
方案二:用DAC的电阻网络,改变电阻的方法,电流输出型DAC内含R-2R电阻网络,可以作为运放的反馈电阻或输入电阻,在DAC输入数据的控制下,实现放大器增益的程控改变。该方案的优点无需外接精密电阻,增益完全由输入的数字量决定,就可以对信号进行放大或衰减,使用方便;缺点是信噪比较低,通频带较窄。本文来自辣.文~论^文·网原文请找腾讯3249-114
方案三:非易失性数字电位器改变电阻,克服了模拟电位器的主要缺点,无噪声,寿命长,阻值可程控改变,设定阻值掉电记忆。该方案优点是增益范围宽,占用μP口少,成本低。通频带取决于运放的通频带。
在本题中,电压增益为40dB,增益10dB步进可调,通频带为100Hz~40kHz,放大器输出电压无明显失真。由于输入信号幅值很小,所以我们选用高精度的测量放大器AD620。
我们采用方案三,非易失性数字电位器与测量放大器的组合,实现程控放大器。电压增益为60dB,增益10dB步进可调,通频带为100Hz~40kHz,放大器输出电压无明显失真。
1.2 滤波器部分
根据题目要求低通滤波器在2fc处,高通滤波器在0.5fc处,放大器与滤波器的总电压增益不大于30dB,我们选用二阶电压控制滤波器。图1.2
二阶电压控制滤波器改变截止频率有以下方案
方案一:采用模拟开关或继电器作为开关,切换不同的RC组合来改变截止频率,优点是电路简单,缺点是电阻网络的匹配难以实现,调试很困难适合截止频率调节档位较少的滤波器。
方案二:固定电容C,采用非易失性数字电位器改变电阻的数值,从而改变截止频率。优点是电路简单, 缺点数字电位器是分档调节,不能实现电阻的连续可调,很难实现截止频率的精确调节。
方案三:利用开关电容技术,利用开关和电容的组合来替代电阻,电容值保持不变,我们只要控制开关的频率,就可以等效的改变电阻,完成对滤波器截止频率的设置。对于具体分析方法在后面有详细叙述。
我们选择方案三,当前较先进的技术,并且已经有了成熟的产品,例如max260可编程滤波器
1.2方案论证
(1)放大器方案论证
放大器输入正弦信号电压振幅为10mV,对于毫伏级的信号放大一般要采用具有高共模抑制比、高精度、高输入阻抗的测量放大器。放大器电路采用AD620和数字电位器组成。数字电位器使用的是X9241MAPI,它把0-2K,0-10K,0-10K,0-50K四个可调电阻集成在一个单片的CMOS微电路中的数控电位器,步进分别为34Ω,170Ω,170Ω,850Ω,经过组合步进更小,所以放大倍数也被控制在一个很精确的范围。2408