单片机通过键盘控制电压的步进,经过单片机控制D/A提供一个参考电压,与输出电压的反馈分压进行比较,在TL494内部的电压误差放大器产生一个高或低电平,控制脉宽变化,来达到调整输出电压的变化,反复调整后使输出达到设定得值为止。参考电压输出后电压的反馈调节是由TL494自动调节的,调节速度快。
由于本设计对效率的要求比较高,所以在设计时尽量选用低功耗的单片机,而且单片机的外围电路要尽量少,本系统外围电路只有键盘,显示,和4个运放(A/D和D/A集成在C8051F020内部),这样可以尽可能的提高效率。框图见图4。
2.2 理论分析与参数计算
2.2.1 主回路器件的选择及参数设计:
2.2.1.1 磁芯和线径选择。当交变电流通过导体时,电流将集中在导体表面流过,这种现象叫集肤效应。电流或电压以频率较高的电子在导体中传导时,会聚集于总导体表层,而非平均分布于整个导体的截面积中。线径的选择主要由本系统的开关频率确定。开关频率越大,线径越小,但是所允许经过的电流越小,并且开关损耗增大,效率降低。本系统采用的频率为44K,查表得知在此频率下的穿透深度为0.3304mm,直径应为此深度的2倍,即为0.6608mm。选择的AWG导线规格为21#,直径为0.0785cm(含漆皮).磁芯选择铁镍钼磁芯,该磁芯具有高的饱和磁通密度,在较大的磁化场下不易饱和,具有较高的导磁率、磁性能稳定性好(温升低,耐大电流、噪声小),适用在开关电源上。
2.2.1.2 其他器件选择见附件2。
java外文文献和java参考文献2.2.2 控制电路设计与参数设计:
控制电路选用TL494来产生PWM波形,控制开关管的导通,Rt,Ct选择为102和24K,频率为 ,为44KHz。软启动电路由14脚和4脚接电阻和电容来实现,通过充放电来实现。启动时间为 = ( =10uF,R=1K)。13号脚接地,采用单管输出,进一步降芯片内部功耗。
2.2.3效率的分析:
输出功率计算公式: ,输入功率计算公式: 。
由于题目要求DC/DC变换器(控制器)都只能由Uin端口供电,不能另加辅助电源,所以单片机及一些外围电路消耗功耗要尽量的低。为此,在设计本系统时单片机采用低功耗单片机C8051F020,该系统集成了8路12位A/D和两路12位D/A.减少了外加A/D和D/A的功耗。提高效率主要是要降低变换器的损耗,变换器的损耗主要有MOSFET导通损耗, MOSFET 开关损耗 MOSFET 驱动损耗,二极管的损耗、输出电容的损耗,和控制部分的损耗,这些损耗可以通过降低开关频率等方法来降低。各级损耗的计算方法如下:1.导通损耗: ;2.开关损耗: ;3.门级驱动损耗: ;4.二极管的损耗: ;5.输出电容的损耗:
2.2.4 保护电路设计与参数设计:本文来自辣.文~论^文·网原文请找腾讯32491.14
康铜电阻的大小选择:康铜丝主要起两个作用,过流保护和测试负载电流。康铜丝接在整流输入地和负载地之间,越小越好,这样会使两个地之间的电压很小。但是如果太小由于干扰问题会造成过流保护的误判,并且对于后级运放的要求比较高,经过实验,选择0.1欧姆的电阻效果比较好。由于电阻太小,难以测量,所以先测得1欧姆的电阻,然后截取其长度的十分之一。
TL494片内有电流误差放大器。可用于过流保护。康铜电阻上的压降,与预先调好的值进行比较.若电流过大,输出高电平,阻止PWM信号产生,开关管处于关断状态,使输出电压降低,形成保护功能。一旦输出电压降低,导致输出电流降低,检测电压降低,电流误差放大器就会输出低电平,重新产生PWM波形,所以该电路具有自恢复功能。
2.2.5 数字设定及显示电路的设计:
由于在输出端采样时测得的反馈电压为输出电压的二十四分之一,即分压为1.5V时输出为36V,分压为1.25V时输出为30V,设计中采用了12位D/A转换精度为0.61mV(参考电压为2.43V),直接输出给TL494提供参考电压。此外还设置了三个A/D芯片,分别采集输出电压,输出电流,和输入电流。为了降低功耗,设计中采用了8位数字显示的LCD,SMS0801B为共阴级,下降沿有效,可显示采样得到的各个采样量。
2.3 硬件核心电路如下:(模块电路见附件5)
图5 DC-DC主回路原理图
2.4软件设计:
本设计的软件设计比较简单,完全出于效率的要求,把外围电路设计的尽可能的少,所以单片机驱动外围芯片均采用I/O口直接控制,没有采用总线方式。
上一页 [1] [2] [3] [4] [5] 下一页
C8051F020开关稳压电源设计_流程图_PCB图_源程序 第2页下载如图片无法显示或论文不完整,请联系qq752018766