压频变换型ADC
前面所讲到的并行比较ADC和逐次逼近型ADC均属于直接转换ADC,而积分型和下面所讲到的压频变换型ADC则属于间接ADC。压频变换型ADC是先将输入模拟信号的电压转换成频率与其成正比的脉冲信号,然后在固定的时间间隔内对此脉冲信号进行计数,计数结果即为正比于输入模拟电压信号的数字量。从理论上讲,这种ADC的分辨率可以无限增加,只要采用时间长到满足输出频率分辨率要求的累积脉冲个数的宽度即可。其优点是:精度高、价格较低、功耗较低。缺点是:类似于积分型ADC,其转换速率受到限制,12位时为100~300SPS。
1.5 ∑-Δ型ADC
与一般的ADC不同,∑-Δ型ADC不是直接根据抽样第一个样值的大小进行量化编码,而根据前一量值与后一量值的差值即所谓的增量的大小来进行量化编码。从某种意义讲,它是根据信号波形的包络线进行量化编码的。∑-Δ型ADC由两部分组成,第一部分为模拟∑-Δ调制器,第二部分为数字抽取滤波器,如图5所示。∑--Δ调制器以极高的抽样频率对输入模拟信号进行抽样,并对两个抽样之间的差值进行低位量化,从而得到用低位数码表示的数字信号即∑--Δ码;然后将这种∑--Δ码送给第二部分的数字抽取滤波器进行抽取滤波,从而得到高分辨率的线性脉冲编码调制的数字信号。因此抽取滤波器实际上相当于一个码型变换器。由于∑--△具有极高的抽样速率,通常比奈奎斯特抽样频率高出许多倍,因此∑--△转换器又称为过抽样A/D转换器。这种类型的ADC采用了极低位的量化器,从而避免了制造高位转换器和高精度电阻网络的困难;另一方面,因为它采用了∑--△调制技术和数字抽取滤波,可以获得极高的分辨率;同时由于采用了低位量化输出的采用高分辨率的码,不会对抽样值幅度变化敏感,而且由于码位低,抽样与量化编码可以同时完成,几乎不花时间,因此不需要采样保持电路,这就使得采样系统的构成大为简化。这种增量调制型ADC实际上是以高速抽样率来换取高位量化,即以速度来换精度。
近年来,采用高分辨率的∑--△型ADC颇为流行,它的一个突出优点是在一片混合信号CMOS大规模集成电路上实现了ADC与数字信号处理技术的结合。这一技术的其它优点:分辨率高达24位;比积分型及压频变换型ADC的转换速率高;采用混合信号CMOS工艺,可实现低价格、高分辨率的数据采集和数字信号处理;由于采用高倍频过采样技术,降低了对传感器信号进行滤波的要求,实际上取消了信号调理。缺点:当高速转换时,需要高阶调制器;在转换速率相同的条件下,比积分型和逐次逼近型ADC的功耗高。目前,∑--△型ADC分为四类:
(1)高速类ADC;
(2)调制解调器类ADC;
(3)编码器类ADC;
(4)传感器低频测量ADC。
其中每一类∑--△型ADC又分为许多型号,给用户带来极大方便。
流水线型(Pipeline)ADC又称为子区式ADC, 辣文论文网(www.751com.cn)版权所有'流水线型转换方式是对并行转换方式进行改进而设计出的一种转换方式[2。它在一定程度上既具有并行转换高速的特点,又克服了制造困难的问题。以8位的两级流水线型为例,它的转换过程首先是进行第一级高4位的并行闪烁转换,得到高4位信号;然后把输入的模拟信号与第一级转换后数字信号所表示的模拟量相减,得到的差值送入第二级并行闪烁转换器,得到低4 位信号。除了两级的流水线型转换方式外,还有第第三、第四甚至更多级的转换器。流水线型转换方式的特点是:精度较高,可达16位左右;转换速度较快,16位该种类型的ADC速度可达5MPSP,较逐次比较型快;分辨率相同的情况下,电路规模及功耗大大降低。但流水线型转换方式是以牺牲速度来换取高精度的,另外还存在转换出错的可能。即第一级剩余信号的范围不满足第二级并行闪烁ADC量程的要求时,会产生线性失真或失码现象,需要额外的电路进行调整。
,辣文论文网(www.751com.cn)版权所有它由若干级级联电路组成,每一级包括一个采样/保持放大器、一个低分辨率的ADC和DAC以及一个求和电路,其中求和电路还包括可提供增益的级间放大器。快速精确的n位转换器分成两段以上的子区(流水线)来完成。首级电路的采样/保持器对输入信号取样后先由一个m位分辨率粗A/D转换器对输入进行量化,接着用一个至少n位精度的乘积型数模转换器(MDAC)产
上一页 [1] [2] [3] [4] [5] [6] [7] 下一页