When the inputs to the PLC are scanned the physical input values are copied into memory. When the outputs to a PLC are scanned they are copied from memory to the physical outputs. When the ladder logic is scanned it uses the values in memory, not the actual input or output values. The primary reason for doing this is so that if a program uses an input value in multiple places, a change in the input value will not invalidate the logic. Also, if output bits were changed as each bit was changed, instead of all at once at the end of the scan the PLC would operate much slower.
3 。2 The Logic Scan
Ladder logic programs are modelled after relay logic. In relay logic each element in the ladder will switch as quickly as possible. But in a program elements can only be examines one at a time in a fixed sequence. Consider the ladder logic in Figure 4, the ladder logic will be interpreted left-to-right, top-to-bottom. In the figure the ladder logic scan begins at the top rung. At the end of the rung it interprets the top output first, then the output branched below it. On the second rung it solves branches, before moving along the ladder logic rung.
Figure 4 Ladder Logic Execution Sequence
The logic scan sequence become important when solving ladder logic programs which use outputs as inputs. It also becomes important when considering output usage. Consider Figure 5, the first line of ladder logic will examine input A and set output X to have the same value. The second line will examine input B and set the output X to have the opposite value. So the value of X was only equal to A until the second line of ladder logic was scanned. Recall that during the logic scan the outputs are only changed in memory, the actual outputs are only updated when the ladder logic scan is complete. Therefore the output scan would update the real outputs based upon the second line of ladder logic, and the first line of ladder logic would be ineffective.
上一页 [1] [2] [3] [4] [5] [6] [7] 下一页