接触到工件的P点速度可以得到如下:
其中Wp是工件的角速度。此外,接触到滚刀刃的P点速度可如下:
经过一些数学运算,(10)可以简化为如下:
按照(9)和(11),相对速度Vf在坐标系Sf可得
方程(12)显示了滚刀件和工件的P点在它们的共同(生成的齿轮齿形面)接触点的相对速度,它们的共同表面nf垂直于它们的相对速度Vf。因此,必须遵守下列公式
方程(13)是啮合方程。方程(12)代入方程(13)产生
这个等式表示所生成齿轮的运动参数和滚齿刀齿面的曲面参数的关系。通过采用数控齿轮滚齿机生成如图1和2滚刀刀具的运动。其实,大部分商业滚齿机是3轴机床。数控滚齿机的有些轴是固定的,而在生产过程中有些轴具有一些专门的关系式。例如,轴A应调整根据生成的齿轮螺旋角,并且在大多数情况下修复。也就是说,当一个右导角λp由螺旋齿轮与导角λh角设立F滚刀刀具等于λp-λh。在螺旋齿轮制造中,轴X和A是固定的;在蜗轮制造,轴A,X及Z是固定的。为了模拟所有的数控滚齿机产生齿轮的制造工艺,工件和轴线之间的运动关系可以写成如下:本文来自辣*文!论(文&网,毕业论文 www.751com.cn 加7位QQ324'9114找源文
其中,mi=Nh/Np,Nh是滚刀量(刀齿的滚刀齿数),Np是齿轮的齿数。然而,从齿廓修形的角度考虑,mi是一个变量。代入式(15)(14)和wh,Vh,Vx,Vz产生以下公式独立变量来重新安排:
由于wh,Vh,Vx和Vz是独立的变量,括号中都是等于零。因此,四个啮合方程,得到代表的坐标系和Sf如下: