浅谈端粒和端粒酶的研究和应用 第3页
三、端粒及端粒酶与衰老的关系
关于端粒丢失同衰老的关系理论是由Olovnikov博士于1973年首次提出的[11]。他认为,端粒的丢失很可能是因为某种与端粒相关的基因发生了致死性的缺失。目前认为,人类细胞内端粒酶活性的缺失将导致端粒缩短,每次丢失50~200个碱基,这种缩短使得端粒最终不能被细胞识别。端粒一旦短于“关键长度”,就很有可能导致染色体双链的断裂,并激活细胞自身的检验系统,从而使细胞进入M1期死亡状态。随着端粒的进一步丢失,将会发生染色体重排和非整倍体染色体的形成等错误,这将导致进一步的危机产生,即M2期死亡状态。当几千个碱基的端粒DNA丢失后,细胞就停止分裂而引起衰老。端粒及端粒酶涉及衰老最有力的证据是Bodnar[12]等证实的。如果细胞试图要文持其正常分裂,那么就必须阻止端粒的进一步丢失,并且激活端粒酶。Cooke[13]等认为,由于人体细胞中的端粒酶未被活化,从而导致了端粒DNA缩短。因此,只有那些重新获得端粒酶活性的细胞才能继续生存下去,对于那些无法激活端粒酶的细胞将只能面临趋向衰老的结果。研究人员最近还发现,患有一种可加速衰老的遗传病人具有异常短的端粒,这进一步表明端粒在衰老过程中所起的重要作用。在人类细胞中,研究者还发现,端粒缩短的速率与细胞抗氧化损伤的能力相关。更容易遭受氧化损害的细胞,其端粒缩短更快,然而那些更能抵抗这种损伤的细胞,端粒缩短得较慢。如果能减免细胞损伤或激活端粒酶,即可控制人类的衰老进程。
有人曾经对人淋巴细胞的衰老性变化与其端粒长度以及端粒酶活性的关系在各种体内体外环境及处理因素下做了观测,发现端粒酶活性和端粒长度的调节有可能是淋巴细胞增殖的控制因素,这已在人体淋巴细胞的发育、分化、激活和衰老过程中被验证。曾发现外周血CD+4T细胞的端粒长度在体内随着衰老以及从静息细胞到记忆细胞的分化过程而缩短,在体外则随着细胞的分裂而缩短,这些结果提示端粒长度与淋巴细胞增殖过程以及记忆性增殖潜力相关。
端粒酶的表达已知能够抑制衰老,而Weinberg and colleagues[14]认为端粒酶的作用主要在于延长了端粒悬垂的长度。细胞的复制期限被认为由最终导致衰老的两个机制决定,一个是累积的DNA损伤,另外一个是端粒的进行性缩短。Weinberg and colleagues研究了一个端粒的特殊悬垂结构在衰老过程中的作用,悬垂结构只在富含C的末端之外还有一个由几百个核苷酸组成的富含G的结构。据称Shay实验小组[15]的研究策略是通过抑制端粒酶活性,从而迫使永生化细胞转变为正常细胞,进入正常的衰老和死亡模式。
在衰老异常发展中有一种早衰人群,即从20岁开始皮肤和毛发等便迅速衰老,其原因仍在于制造端粒酶的遗传基因。细胞在分裂的时候,DNA双螺旋结构以其一根长链为“模子”进行DNA复制。在DNA修复损伤的时候,“拆解”DNA的双螺旋结构是必要的,制造端粒酶的遗传基因在解开DNA螺旋结构上起作用。像制造端粒酶并从事DNA复制和修改错误的一类遗传基因,若与延长细胞寿命的端粒酶良好结合,我们也许能期待向“长生不老”的目标进一步接近。
四、展望和未来
总之,人类体细胞在复制衰老过程中产生的端粒丢失现象已在体外得到了证实,而且体内的端粒丢失可作为判断供体年龄的依据。我们只要设法使已衰老的人体内各种干细胞的端粒长度恢复到年轻时的水平,老人就会返老还童和长生不老。但在人类端粒及端粒酶的基础研究中,还存在着许多难点,如:人端粒末端的精细结构,端粒的非端粒酶延伸机制;人端粒酶的具体结构及其基因所在的位置;端粒酶的激活机制及其活性调节等,均有待于回答。尽管如此,我们似乎仍看到了前景的美好。毕竟人们已找到了同衰老有着紧密相关性的因素——端粒和端粒酶。人们对于端粒抑制剂的研究已经蓬勃的展开了。故进一步研究端粒酶的活性调节机制,对于开发新型延缓衰老的端粒酶抑制剂无疑具有重要意义。Colorado大学的两位研究人员Thomas Cech 和Robert Weinbrg[16]博士已独立地克隆出一种控制人类细胞端粒酶活性的基因。应用这种基因,很有可能得到一种新的蛋白质——端粒酶的控制剂。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] 下一页