中药高通量转录组研究进展 第3页
[参考文献]
[1] Nie H, Zhang H, Zhang X Q, et al. Relationship between HPLC fingerprints and in vivo pharmacological effects of a traditional Chinese medicine:Radix Angelicae Dahuricae[J]. Nat Prod Res, 2011,25(1):53.http://www.751com.cn
[2] Kong W J, Zhao Y L, Shan L M, et al. Investigation on the spectrum-effect relationships of EtOAc extract from Radix Isatidis based on HPLC fingerprints and microcalorimetry[J]. J Chromatogr B, 2008, 871(1):109.
[3] Wang W, Wang Y, Zhang Q, et al. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing[J]. BMC Genomics, 2009, 10(1):465.
[4] Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomics, 2010, 11(1):262.
[5] Zeng S, Xiao G, Guo J, et al. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc. ) Maxim[J]. BMC Genomics, 2010, 11(1):94.
[6] Yuan Y, Song L, Li M, et al. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb[J]. BMC Genomics, 2012, 13(1):195.
[7] He L, Xu X, Li Y, et al. Transcriptome analysis of buds and leaves using 454 pyrosequencing to discover genes associated with the biosynthesis of active ingredients in Lonicera japonica Thunb[J]. PLoS ONE, 2013, 8(4):e62922.
[8] Gahlan P, Singh H R, Shankar R, et al. De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments[J]. BMC Genomics, 2012, 13(1):126.
[9] Shahin A, van Kaauwen M, Esselink D, et al. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa[J]. BMC Genomics, 2012, 13(1):640.
[10] Tang Q, Ma X, Mo C, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis[J]. BMC Genomics, 2011, 12(1):343.
[11] Li Y, Luo H M, Sun C, et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis[J]. BMC Genomics, 2010, 11(1):268.
[12] 李滢, 孙超, 罗红梅, 等. 基于高通量测序454 GS FLX 的丹参转录组学研究[J]. 药学学报, 2010, 45(4):524.
[13] Yao B, Zhao Y, Wang Q, et al. De novo characterization of the antler tip of Chinese Sika deer transcriptome and analysis of gene expression related to rapid growth[J]. Mol Cell Biochem, 2012, 364(1-2):93.
[14] Yao B, Zhao Y, Zhang H, et al. Sequencing and de novo analysis of the Chinese Sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology[J]. Biotechnol Lett, 2012, 34(5):813.
[15] Chen S, Luo H, Li Y, et al. 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng[J]. Plant Cell Rep, 2011, 30(9):1593.
[16] Hao D C, Ma P, Mu J, et al. De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum[J]. Sci China Life Sci, 2012, 55(5):452.
[17] Huang L L, Yang X, Sun P, et al. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers[J]. PLoS ONE, 2012, 7(6):e38653.
[18] 郝大程, 马培, 穆军, 等. 中药植物虎杖根的高通量转录组测序及转录组特性分析[J]. 中国科学:生命科学, 2012, 42(5):398.
[19] 李铁柱, 杜红岩, 刘慧敏, 等. 杜仲果实和叶片转录组数据组装及基因功能注释[J]. 中南林业科技大学学报, 2012, 32(11):122.
[20] 石睿. 马鹿鹿茸软骨组织转录组SNP与DIP分析[D]. 哈尔滨:东北林业大学, 2012.
[21] 吴宏清, 王磊, 陶美华, 等. 化学诱导后白木香转录组文库的构建与测序[J]. 生物技术通报, 2013 (8):63.
[22] Rothberg J M, Leamon J H. The development and impact of 454 sequencing[J]. Nat Biotechnol, 2008, 26(10):1117.
[23] Droege M, Hill B. The genome sequencer FLX system-longer reads, more applications, straight forward bioinformatics and more complete data sets[J]. J Biotechnol, 2008, 136(1):3.
[24] Glenn T C. Field guide to next-generation DNA sequencers[J]. Mol Ecol Resour, 2011, 11(5):759.
[25] Zdobnov E M, Apweiler R. InterProScan——an integration platform for the signature-recognition methods in InterPro[J]. Bioinformatics, 2001, 17(9):847.
[26] Conesa A, G tz S, García-Gómez J M, et al. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18):3674.
[27] Kristensen D M, Wolf Y I, Mushegian A R, et al. Computational methods for gene orthology inference[J]. Brief Bioinform,2011, 12(5):379.
[28] Tatusov R L, Natale D A, Garkavtsev I V, et al. The COG database:new developments in phylogenetic classification of proteins from complete genomes[J]. Nucleic Acids Res, 2001, 29(1):22.
[29] Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1):27.
[30] Mank M, Stahl B, Boehm G. 2, 5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules[J]. Anal Chem, 2004, 76(10):2938.
[31] Clancy P. A rapid quality assurance spectrophotometer for the pharmaceutical industry[J]. Am Lab, 1988, 2:176.
[32] 陈斌, 赵龙莲, 李军会, 等. 近红外光谱法快速分析葛根中的有效成分[J]. 光谱学与光谱分析, 2002, 22(6):976.
[33] 汤佩佩, 白明, 苗明三. 中医药研究与网络药理学[J]. 中医学报, 2012(9):1112.
[34] 孙国祥, 胡玥珊, 张春玲, 等. 构建中药数字化指纹图谱研究[J]. 药物分析杂志, 2009(1):160.
[35] 张铁军. 中药质量认识与质量评价[J]. 中草药, 2011, 42(1):1.
[36] 吴伟康, 李劲平, 罗汉川, 等. 四逆汤抗心肌缺血作用的相关蛋白谱研究[J]. 中国病理生理杂志, 2005, 21(3):506.
[37] Chen M, Zhao L, Jia W. Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model[J]. J Proteome Res, 2005, 4(6):2391.
[38] Zhang X, Wu H, Liao P, et al. NMR-based metabonomic study on the subacute toxicity of aristolochic acid in rats[J]. Food Chem Toxicol, 2006, 44(7):1006.
Advances in high-throughput transcriptome research of
traditional Chinese medicines
ZHANG Zhao-bao1, HOU Lin1, PAN Qing1, WANG Xu-min2, 3, CUI Qing-hua1, TIAN Jing-zhen1, MA Lu-yu4*
(1. College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji′nan 250300, China;
2. Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics,
Chinese Academy of Sciences, Beijing 100101, China;
3. Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics,
Chinese Academy of Sciences, Beijing 100101, China;
4. Shandong Academy of Medical Sciences, Ji′nan 250062, China)
[Abstract] Traditional Chinese medicine is a treasure of Chinese culture, absorbing the wisdom of the Chinese people. Continuous application of new technologies makes traditional Chinese medicine research advance with the times. After several years of development, high-throughput transcriptome study has become a mature research tool in biology. This paper reviewed the advances in medicine transcriptome study, and compared two sequencing platforms, Roche′s GS FLXTM platform and Illumina′s HiSeqTM 2000 platform. Moreover, this paper introduced medicine transcriptome analysis process, with Panax quinquefolius and Lonicera japonica for examples, showing the characteristics of traditional Chinese medicine transcriptome studies. High-throughput transcriptome studies facilitate traditional Chinese medicine research with overall understand of functional genes, give clear elucidation of metabolic pathways, lay molecular foundation for the traditional Chinese medicine research and offer modern interpretation for traditional Chinese medicine theory. However, the current study faces several difficulties, including weak molecular basis, high sequencing cost and staff shortages in data anaysis. In the future, with the development in sequencing technology, the combination of transcriptome and other genomics, such as proteome and metabolome, will lay a solid foundation for the new high-throughput screening and developing model for the traditional Chinese medicine industry.
[Key words] traditional Chinese medicine; transcriptome; Panax quinquefolius; Lonicera japonica
doi:10.4268/cjcmm20140902
上一页 [1] [2] [3]
中药高通量转录组研究进展 第3页下载如图片无法显示或论文不完整,请联系qq752018766