ACKNOWLEDGEMENTS The authors gratefully acknowledge the Major Project of National Natural Science Foundation (Project No. 50834004). REFERENCES [1] QIAN Ming-gao, XU Jia-lin, MIAO Xie-xing. Technique of cleaning mining in coal mine[J]. Journal of China University of Mining & Technology,2003,32(4):343-348. (in Chinese) [2] ZHANG Ji-xiong, MIAO Xie-xing, Underground Disposal of Waste in Coal Mine[J].Journal of China University of Mining & Technolog,2006,35(2):197-200. (in Chinese) [3] SUN Xi-kui, LI Xue-hua. The New Technology of Waste-filling Replacement Mining on Strip Coal Pillar[J]. Journal of China Coal Society,2008,33(3):259-263. (in Chinese) [4] PAN Zhao-ke, LIU Zhi-he.Fractal Properties of Size Distribution of Gangue Agmentation and Routine Calculation[J]. Journal of Taiyuan University of Technologyˈ2004ˈ35(2)˖115-117. (in Chinese) [5] DENG Tao, YANG Lin-de, HAN Wen-feng. Influence of Loading Form on Distribution of Marble Fragments[J]. Journal of Tongji University(Natural Science), 2007,35(1):10-14. (in Chinese) [6] PAN Zhao-ke, LIU Zhi-he. Fractal Properties of Size Distribution of Gangue Agmentation and Routine Calculation[J]. Journal of Taiyuan University of Technology. 2004,35(2):115-117. (in Chinese) [7] YAN Tie; LI Wei; BI Xue-liang; LI Shi-bin. Fractal Analysis of Energy Consumption of Rock Fragmentation in Rotary Drilling[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(s2):3649-3654. (in Chinese) [8] LIU Song-yong, DU Chang-long, LI Jian-ping. Fractal Character of the Distribution Law of the Cutting Coal Size[J].Journal of China Coal Society, 2009,34(7):978-982. (in Chinese) [9] Maciac A, Cuerda E M, Diaz M A. Application of the Rosin-rammler and Gates-gaudin-schuhmann Models to the Particle Size distribution Analysis of Agglomerated Cork[J]. Materials Characterization, 2004,52:1592164 [10] TAO Chi-dong. Mining Machinery [M].Bei Jing: Coal Industry Press, 1993:35-37. [11] Turcotte D L. Fractals and Fragmentation[J]. J Geophys Res, 1986, 91 (132) : 1 921̚1 926 . [12] GAO FengˈXIE He-pingˈZHAO Peng. Fractal Properties of Size-frequency Distribution of Rock Fragments and the Influence of Meso-structure [ J ]. Chinese Journal of Rock and Engineering, 1994,13 (3) :240̚246. (in Chinese) [13] XIE He-ping. Introduction of the Fractals-Rock Mechanics [M]. Bei Jing: Science Press, 1996:112-116. (in Chinese) [14] WANG Li, GAO Qian. Fragmentation Predicition of Rock Based on Damage Energy Dissipation[J]. Journal of China Coal Society, 2007ˈ32(11)˖1170-1174. (in Chinese)
摘要:煤炭冲击式破碎机粒径分布分形是建立在分形理论上的。正交实验是通过冲击性粉碎设备和煤炭破碎机的粒度分布线性嵌合在双对数坐标来进行分析。结果表明,在双对数坐标的回归曲线是线性回归直线时对结果是有利。煤炭反击式破碎机分形理论是适用于分配纪律。其中在影响煤炭分形文数的因素中,冲击速度的影响是显着的,材料的硬度是其次的,并且冲击频率相当小;煤炭硬度随着分形文数减少而增加和随着冲击速度增加而增加。论文网
关键词:冲击式破碎机;分形特征;正交实验;粒径分布
I. 引言
随着挖掘机械化的增加和煤层中夹石层的开采,原煤的质量减小,并且大型煤矸石混合在煤中的含量也随之增加。大量煤矸石的进入影响选煤效率,并同时增加了准备的成本,并且煤矸石在制备后堆叠在地面,成为环境污染的危险源。在底下煤矸石与煤炭的分离,不仅可以提高原煤质量,降低准备成本,而且还可以提供井下的煤矸石补填[1~2]。煤和煤矸石的冲击性崩溃是一种有效的方法来把煤矸石与煤分开,并且地下岩石碰撞的统计特性可以通过分形文数[3̚4]中描述。因此煤和煤矸石的分形碎片分布研究可以提供煤矸石分离与理论支持。在国内外的学者主要探讨的是岩石碎片在冲击载荷粒子的粒径分布研究中受损的分形特征,并且岩石材料在一般机械破碎损坏下的分形特征并没有进行充分的探讨。岩石碎片在uiaxial抗压测试中得出的分形特征在参考文献[5,6]中被应用,对于消耗能源的岩石的破碎分形模型提供了文献[7]中的回转钻进,并且煤在切割后,它的尺寸的分形特征被参考文献[8]研究。对于煤和煤矸石的冲击式破碎机分形特征的研究是一次罕见的对比。因此,煤炭冲击式破碎机的分形特征是根据本文冲击性试验进行的研究。 煤炭冲击式破碎机英文文献和中文翻译(3):http://www.751com.cn/fanyi/lunwen_33997.html