References [1] QUAN Long. Current state, problems and the innovative solution of electro-hydraulic technology of pump controlled cylinder [J]. Chinese Journal of Mechanical Engineering, 2008, 44(11): 87−92. (in Chinese) [2] ITO M, SATO H, MAEDA Y. Direct drive volume control of hydraulic system and its application to the steering system of ship [C]// Proceedings of FLUCOME’97. Hayama, 1997: 445−450. [3] ITO M, HIROSE N, SHIMIZU E. Main engine revolution control for ship with direct drive volume control system [C]// Proceedings of ISME. Tokyo, 2000: 221−229. [4] QUAN Long, LI Feng-lan, WANG Xiang. Study on the efficiency of differential cylinder system driven with servo motor and constant pump [J]. Proceedings of the CSEE, 2006, 26(8): 93−98. [5] TIAN Yuan, WU Sheng-lin. Theoretic analysis and experiment of valveless electro-hydraulic servo system [J]. China Mechanical Engineering, 2003, 14(21): 1822−1823. (in Chinese) [6] ZHANG You-wang, GUI Wei-hua. Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control [J]. J Cent South Univ Technol, 2008, 15(2): 256−263. [7] ZHOU Miao-lei, TIAN Yan-tao, GAO Wei, YANG Zhi-gang. High precise control method for a new type of piezoelectric electro-hydraulic servo valve [J]. J Cent South Univ Technol, 2007, 14(6): 832−837. [8] WU Yong-hong, ZHANG De-hua, DUAN Suo-lin. Iterative learning control on electro-hydraulic position servo systems of the pump-controlled cylinder [J]. Journal of Taiyuan University of Science and Technology, 2006, 27(4): 277−280. (in Chinese) [9] ZHAO Sheng-dun, WANG Ji, WANG Li-hong. Iterative learning control of electro-hydraulic proportional feeding system in slotting machine for metal bar cropping [J]. International Journal of Machine Tools and Manufacture, 2005, 45: 923−931. [10] CHEN C K, HWANG J. Iterative learning control for position tracking of a pneumatic actuated X-Y table [J]. Control Engineering Practice, 2005, 13: 1455−1461. [11] TAYEBI A, ISLAM S. Adaptive iterative learning control for robot manipulators: Experimental results [J]. Control Engineering Practice, 2006, 14: 843−851. [12] GOPINATH S, KAR I N, BHATT R K P. Experience inclusion in iterative learning controllers: Fuzzy model based approaches [J]. Engineering Applications of Artificial Intelligence, 2008, 21: 578−590. [13] WANG Yan, FU Yong-ling. Application of fuzzy sliding mode iterative learning control algorithm in hydraulic servo system [J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(11): 86−89. (in Chinese) [14] XU Min, LIN Hui, LIU Zhen. Iterative learning control law with variable learning gain [J]. Control Theory and Applications, 2007, 24(5): 856−860. (in Chinese) [15] OUYANG P R, ZHANG W J, GUPTA M M. An adaptive switching learning control method for trajectory tracking of robot manipulators [J]. Mechatronics, 2006, 16: 51−61. (Edited by YANG You-ping)
开关磁阻电机直驱式容积控制液压机的电液伺服系统的模糊迭代学习控制
摘要:一种新的控制液压机的液压两者的优点结合起来,开发了开关磁阻电动机 (开关的磁阻电动机) 驱动技术。考虑容积控制电液伺服系统中存在的严重的死区和时变非线性,国际法委员会 (迭代学习控制) 方法应用于跟踪液压机滑块的位移曲线。为了提高收敛速度和精度的迭代学习控制,提出了一种模糊的迭代学习控制算法,运用模糊策略自适应地调节迭代学习收益。模拟和实验研究进行了探讨的收敛速度和精度的模糊迭代学习控制的液压机滑块位置跟踪。结果表明,模糊迭代学习控制可以极大地提高迭代学习速度,实现跟踪控制滑块位移曲线与响应速度快,控制精度高。在12 次迭代实验中,最大跟踪误差只有0.02 V 。
毕业论文关键词:液压机;容积控制电液伺服;迭代学习控制;模糊控制 开关磁阻电机液压机电液伺服系统英文文献和中文翻译(5):http://www.751com.cn/fanyi/lunwen_40872.html