[8] Cheok BT, Nee AYC (1998). Configuration of progressive dies. Artif Intell Eng Des Anal Manuf 12:405–418.
[9] Prasad YKDV (1994). A set of heuristic algorithms for optimal nesting of two-dimensional irregularly shaped sheet-metal blanks. Comput Ind 24:55–70.
[10] Huang K, Ismail HS, Hon KB (1996). Automated design of progressive dies. Proc Inst Mech Eng B J Eng Manuf 210(B4):367–376.
[11] Ismail HS, Chen ST, Hon KKB (1996). Feature-based design of progressive press tools. Int J Mach Tools Manuf 36(3):367–378.
[12] Li CY, Li JJ, Wen JY, Xiao XZ (2001). HPRODIE: using feature modeling and feature mapping to speed up progressive die design. Int J Prod Res 39(18):4133–4151.
[13] Choi JC, Kim BM, Kim C (1999). An automated progressive process planning and die design and working system for blanking or piercing and bending of a sheet metal product. Int J Adv Manuf Technol 15:485–497.
[14] Lin ZC, Hsu CY (1996). An investigation of an expert system for shearing cut progressive die design. Int J Adv Manuf Technol 11:1–11.
[15] Lin ZC, Chang YC (1997). Sash sheet metal development and the application of a back-propagation neural network in the calculation of the developed length. J Mater Process Technol 69:95–105.
[16] Lin ZC, Deng CH (2001). Application of Petri net in the planning of a shearing cut and bending progressive die workstation. Int J Mater Prod Technol 10:579–591.
[17] Thompson JB, Lu SCY (1989). Representing and using design rationale in concurrent product and process design. Concurrent Product and Process Design, ASME Winter Annual Meeting, 1015 Dec 1989, pp 109–115.
[18] Srihari K, Cecil JA, Emerson CR (1994). A blackboard-based process planning system for the surface mount manufacture of PCBs. Int J Adv Manuf Technol 9:188–194.
[19] Chen CH, Occena LG, Fok SC (2001). CONDENSE: a concurrent design evaluation system for product design. Int J Prod Res 39(3):413–433.
[20] Roy U, Liao JM (1998). Application of a blackboard framework to a cooperative fixture design system. Comput Ind 37:67–81.
[21] Kwong CK, Smith GF, Lau WS (1997). A blackboard-based approach to concurrent process design of injection moulding. J Mater Process Technol 70:258–263.
[22] Britton GA, Tor SB, Zhang WY (2003). Techniques in knowledge-based expert systems for the design of engineering systems. In: Leondes CT (ed) Business and technology of the new millennium. Kluwer, New York.
[23] Shah JJ, Mantyla M (1995). Parametric and feature-based CAD/CAM:concepts, techniques, and applications. Wiley, New York.
[24] Chen YM, Miller RA, Vemuri KR (1991). A framework for feature based part modeling. Comput Eng ASME 1:357–365.
[25] Tor SB, Britton GA, Zhang WY (2003). Indexing and retrieval in metal stamping die design using case-based reasoning. J Comput Inf Sci Eng, in press.
[26] Eriksson H (1992). A survey of knowledge acquisition techniques and tools and their relationship to software engineering. J Syst Softw 19:97–107.
[27] Zhang WY, Tor SB, Britton GA (2002). A two-level modeling approach to acquire functional design knowledge in mechanical engineering systems. Int J Adv Manuf Technol 19:454–460.
[28] Electronic Data System Corporation (2001). Unigraphics user’s manual, version 18.0. Electronic Data System Corporation, Maryland Heights,MO.
摘 要:人们普遍认为料条布局的冲压工艺规划是级进模设计的一个关键的任务。然而,冲压工艺规划更像是一门艺术,而不是一门科学。为了解决此类问题,尽管在人工智能领域的最新进展和应用各种知识已经取得了结合内置智能的成功。但主要的困难是,现有的以知识为基础的冲压工艺规划缺乏一个正确的结构来在一个协调的决策制定环境中组织管理各种不同知识源。本文提出一个以知识为基础的冲压工艺规划黑板框架。这种方法通过自动化料条布局设计来加速级进模设计过程。本文引用一个例子例子显示了该方法的有效性。 论文网 级进模设计冲压工艺英文文献和中文翻译(8):http://www.751com.cn/fanyi/lunwen_41421.html