毕业论文

打赏
当前位置: 毕业论文 > 外文文献翻译 >

三维编织复合材料力学性能的有限元分析英文文献和中文翻译(4)

时间:2020-06-02 21:40来源:毕业论文
AIAA J 1983;21:171421.[3] Ishikawa T, ChouTW. Elastic behavior of woven hybridcomposites. J Compos Mater 1982;16:219.[4] Ishikawa T, ChouTW. Stiffness and strength behavior of fabriccomposites. J Mat


AIAA J 1983;21:1714–21.[3] Ishikawa T, ChouTW. Elastic behavior of woven hybridcomposites. J Compos Mater 1982;16:2–19.[4] Ishikawa T, ChouTW. Stiffness and strength behavior of fabriccomposites. J Mater Sci 1982;17:3211–20.[5] Ma C-L, Yang J-M, ChouT-W. Elastic stiffness of three-dimensional braided textile structural composites. In: CompositeMaterials: Testing and Design, Seventh Conference; 1984. p. 404–21.[6] Yang J-M, Ma C-L, ChouT-W. Fiber inclination model of three-dimensional textile structural composites. J Compos Mater1986;20:472–83.[7] Whyte DW. Ph.D.thesis, Drexel University, June 1986.[8] Wang Y-Q, Wang ASD. Microstructure/property relationships inthree-dimensional braided fiber composites. Compos Sci Technol1995;53:213–22.[9] Naik RA, IfjuPG, Masters JE. Effect of fiber architectureparameters on deformation fields and moduli of 2D braidedcomposites. J Compos Mater 1994;28:656–81.[10] Naik RA. Micromechanical combined stress analysis. NASA CR-189694, October. Program available as NASA LAR-15005,COSMIC, National Aeronautics and Space Administration,Hampton, VA; 1992.[11] Naik RA. Failure analysis of woven and braided fabric reinforcedcomposites. J Compos Mater 1995;29:2334–63.[12] Whitcomb JD, Woo K. Application of iterative global/local finiteelement analysis. Part I : linear analysis. Commun NumerMethods Eng 1993;9:745–56.[13] Woo K, Whitcomb JD. Global/local finite element analysis fortextile composites. J Compos Mater 1994;28:1305–21.[14] Whitcomb JD, Woo K, Gundapaneni S. Macro finite element foranalysis of textile composites. J Compos Mater 1994;28:607–18.[15] Woo K, Whitcomb JD. Three-dimensional failure analysis ofplain weave textile composites using global/local finite elementmethod. J Compos Mater 1996;30:984–1003.[16] Tang ZX, Postle R. Mechanics of three-dimensional braidedstructures for composite materials––part III: nonlinear finiteelement deformation analysis. Compos Struct 2002;55:307–17.[17] Huang Z-m. On a general constitutive description for the inelasticand failure behavior of fibrous laminates––part I: laminate theory.Compos Struct 2002;80:1159–76.[18] Huang Z-m. On a general constitutive description for the inelasticand failure behavior of fibrous laminates––part II: laminatetheory and applications. Compos Struct 2002;80:1177–99.[19] Zeng T, WuL-z, Guo L-c. A damage model for 3D braidedcomposites with transverse cracking. Compos Struct 2003;62(2):163–70.[20] Yang JM, Ma CL, ChouTW. Fiber inclination model of three-dimensional textile structure composites. J Compos Mater1986;20:472–84.[21] Hashin Z. Analysis of composite materials––a survey. ASME JAppl Mech 1983;50:481–505.[22] Chen L, Tao XM, Choy CL. Mechanical analysis of 3-D braidedcomposites by the finite multiphase element method. Compos SciTechnol 1999;59:2383–91.0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.20.30.40.50.60.70.80.91.01.1Normalized effective Possion's ratio ( γγeffzx/zx)Normalized crack length (a0/a) Glass/epoxy Graphite/epoxy Ceramic/ceramicFig. 12. Normalized Poisson’s ratio vs. normalized crack length.

摘要因为三维编织复合材料结构复杂,所以分析起来更加困难。因此笔者发明了一种新型有限元方法来预测三维编织复合材料在三维机械载荷下的有效模量和局部应力。为了验证本方法,将本方法中预测的无损的三维编织复合材料的性能进与以前的方法相比。下面将举例说明。

2003 Elsevier公司保留所有权利。

关键词:三维编织复合材料;有限元法;力学性能;开裂

1. 介绍

纤维增强复合材料具有优良的力学性能如高强度、论文网高刚度等。特别是层状复合结构已被广泛应用在需要很好的面属性的情况下。然而,层状复合材料在厚度方向上机械性能较差并且易产生层间剥离。为了克服这个困难,在过去的20年间,三维编织复合材料得到了快速发展。这种材料具有较好的外平面刚度、强度和抗冲击性能。因此在在航空航天,汽车和船舶工业有广阔的应用前景。由于三维编织复合材料的应用越来越广泛,许多模型已经被开发来分析其力学性能。因为其复杂的结构,这些分析是非常具有挑战性的。 三维编织复合材料力学性能的有限元分析英文文献和中文翻译(4):http://www.751com.cn/fanyi/lunwen_53607.html

------分隔线----------------------------
推荐内容