This coefficient for soil-cement decreases with further relative deflec-tions but does not approach zero even at a failure load. Compared to a pure H-beam under the same load, the stiffness of a compound beam is still much larger, which is mainly because of the soil-cement and also the point different from the SMW technique. The form of different H-beams has some effect on the stiffness contribution coefficient. Soil types and the number and position of H-beams (single or dou-ble compound H-beam) add greatly to the stiffness of soil-cement. When number, position and joint form of H-beams in a compound H-beam vary, their bending stiffness and ultimate deflection are also different. However, before cracking, compound beams can be regarded as an elastic structure, thus the joint form of H-beams at one end has little effect on double H-steel compound beams. After cracking, the stiffness of compound beams decreases quickly. The minimum contribution coefficient for soil-cement at this point can be used in practice. References [1] Kong D, Zhang Q, Song J. Study on bending stiffness of reinforced continuous cement-soil wall. Chinese J of Geotechnical Engineering, 2004, 23(11): 35–38. (In Chinese) [2] Han J, Zhou H T, Ye F. State-of-practice review of deep soil mixing techniques in China. Transportation Re-search Record, 2002(1808): 49–57. [3] Wong D O, Stephens A J, Williams C E, et al. Predicted and observed behavior of a deep-soil-mixing braced wall. Transportation Research Record, 1993(1406): 41–49. [4] Huang X, Song F, Zou D F. Application of reinforced soil-cement retaining wall in high stress area. Industrial Construction, 2000, 30(5): 78–81. (In Chinese) [5] Liang R W, Yu N. An experimental study about me-chanical properties of reinforced cemented-soil beams. Rock and Soil Mechanics, 2000, 21(3): 267–270. (In Chinese) [6] Wang J, Xia M Y. Design and calculation of retaining structure with H-steel and soil-cement pile. Journal of Tongji University, 1998, 26(6): 636–639. (In Chinese)
摘要:例如14--20号工字钢可以插入水泥土挡土墙来形成小H型钢水泥土复合墙。功能上既是挡土墙也是作为支撑结构挖掘的截水墙。不同在于混合水泥挡土土墙(SMW),水泥挡土墙和小工字钢之间的交互是非常好的。我们已经水泥土复合梁模型的基础上做了一系列的小H梁弯曲试验去研究他们的相互机理。结果表明无论工字钢是单是双,H梁和水泥土之间的相互作用是很好的。在开裂之前,联合形式的双H横梁的一端对于贡献系数和极限挠度有一些小影响。但在开裂后,联合形式大大影响贡献系数,我们得出了在实践中刚性接头梁对双H梁是更好的选择。
关键词:小工字钢;水泥土复合梁;刚度贡献系数;极限挠度;土壤类型;实验研究;
1、介绍
混合水泥挡土墙(SMW)技术在日本自19实际80年代发展起来,已经成功用于成千上万的项目。SMW技术基本上是用机械手段去混合原位土或其他硬化试剂形成挡土墙(由重叠的水泥土列组成)的土壤改良技术。为基坑开挖支护所作的水泥挡土墙设计为了抵抗弯矩和沿纵向方向的墙的剪切应力应当包括钢筋的设计和通常的宽凸缘H梁。同时,为了抵抗和重新分配在邻近钢筋之间的水平应力它还应当包括钢筋之间的水泥土设计。作为一个截水墙,在水泥土之间的孔隙大小应该足够小和开裂应当不能够越过墙体。SMW技术通常用于深基坑,因为抗弯能力大和墙体的挠度大。因此,SMW墙的设计理念中使用H梁是为了抵抗一切弯矩。H梁和水泥土之间的联系是不重要的,但它不能够被忽视。当用SMW法用于浅层开挖(开挖深度小于10m)用工字钢应该小是因为它的弯矩也小。水泥挡土墙通常是由两个或三个等级的水泥土桩组成,因此,墙体的厚度大并且墙体的偏差小。在这种情况下,联系不能被忽略。因此,为了在中国的浅层基坑开挖(通常不会超过10m),一种改进的SMW墙考虑了这种联系。也就是说,重叠的两行或三行首先形成水泥土桩的原位,然后小工字钢插入作为强化,形成带有水泥土和小工字钢的复合水泥土墙。简而言之,我们称这种改进的复合SMW墙为墙或是梁,由于这种小刚度的工字钢,水泥土和小H梁之间的联系是很强并且工字钢和水泥土的影响对于偏转和弯曲能力的化合物墙是至关重要的。我们已经研究了小工字钢和水泥土复合模型梁的交互联系。 H横梁和水泥土挡土墙相互作用机理英文文献和中文翻译(3):http://www.751com.cn/fanyi/lunwen_56225.html