卷积码有序列译码、门限译码、Viterbi译码等几种译码方法。序列译码算法是最早提出的卷积码译码算法,是一种以最大似然译码原理为基础的准最佳概率译码,R.M.Fano引入了一种新的序列译码的变型。门限译码算法曾经是卷积码的第一种实用的译码方法。该算法虽然误码性能稍差但易于实现,使卷积码在有线和无线信道的数据传输中得到了一些实际应用。Viterbi算法,以最大似然译码原理为基础,是一种基于码的网格图的最佳概率译码算法。
1.3课题意义
卷积码是深度空间通信系统和无线通信系统中常用的一种差错控制编码。在编码过程中,卷积码充分利用了各码字间的相关性。在与分组码同样的码率和设备复杂性的条件下,无论从理论上还是从实践上都证明,卷积码的性能都比分组码具有优势。在卷积码译码过程中,不仅从此时刻收到的码组中提取译码信息,而且还要利用以前或以后各时刻收到的码组中提取有关信息。而且卷积码的纠错能力随约束长度的增加而增强,差错率则随着约束长度增加而呈指数下降。卷积码(n,k,m)主要用来纠随机错误,它的码元与前后码元有一定的约束关系而且卷积码在实现最佳译码方面也较分组码容易。因此卷积码广泛应用于卫星通信,CDMA数字移动通信等通信系统,是很有前途的一种编码方式,对其进行研究有很大的现实意义。
2.信道编码
2.1信道编码研究背景
信道编码是数字通信系统的重要组成部分,随着通信技术的不断发展,信道编码技术也在不断地发展。在通信系统中,信道传输特性不理想以及噪声的存在,会导致接收端出现接收信号的错误,因此用于信道纠错的信道编码是数字通信系统中极为重要的一个环节。二十世纪40年代香农定理的出现为人们指出了纠错码的研究方向。
根据香农的有噪信道编码定理,可以推导出一个码率为R的编码通信系统达到无误码传输状态所必须的最小信噪比的理论极限。这个理论极限通常称为香农限,它说明对一个码率为R的编码通信系统,只有当SNR超过这个极限值时才能获得无误码传输。只要SNR高于这个极限值,香农的编码定理保证了能够获得无误码传输的(可能相当复杂)编码通信系统的存在性。另外,香农证明了在采用无限长的随机编码时,数据可以以接近信道容量的速率几乎无误码的传输,从而为信道编码的研究奠定了基础。
2.2信道编码基本原理
由于实际信道存在噪声和干扰,使发送的码字与信道传输后所接收的码字之间存在差异,称这种差异为差错。信道编码的目的是为了改善通信系统的传输质量。纠错编码的目的是引入冗余度,即在传输的信息码元后增加一些多余的码元(称为校验元,也叫监督元),以使受损或出错的信息仍能在接收端恢复。
图2.1 信道编码原理图
可见,用纠(检)错控制差错的方法来提高通信系统的可靠性是以牺牲有效性的代价来换取的。在通信系统中,差错控制方式一般可以分为检错重发、前向纠错、混合纠错检错和信息反馈等四种类型。
香农理论为通信差错控制奠定了理论基础。香农的信道编码定理指出:对于一个给定的有干扰信道,如信道容量为C,只要发送端以低于C的速率R发送信息(R为编码器输入的二元码元速率),则一定存在一种编码方法,使编码错误概率p随着码长n的增加,按指数下降到任意小的值。这就是说,可以通过编码使通信过程实际上不发生错误,或者使错误控制在允许的数值之下。 Matlab维特比译码算法在不同信道中的性能仿真研究(3):http://www.751com.cn/tongxin/lunwen_14625.html