模糊神经网络能够较好地模拟人的思文方式,反应总结人的经验,通过对既有的经验进行总结、归纳,形成一系列的规则,然后借助于这些规则,就可以对被控对象进行有效的控制[6]。这个方法通常在采用能耗制动为主,空气制动为辅的组合制动方式时比较理想。
遗传算法借助于选择、交叉、变异算子,遗传算法借助种群中的所有个体在每次迭代中都较上代有所改善,引导个体逐渐向最优解移动[7]。遗传算法体现了优胜劣汰自由选择的思想,这种算法适应性强,易于与其他的智能方法融合形成性能更强大的优化算法。微粒群算法是受到生物体社会行为的启发衍生而来,生物群体在一个给定区域内活动,通过相互间信息交流而达到期望的位置,微粒群算法与遗传算法等其他进化算法类似,它的实现和参数设置更加简便[8]。
1.5论文章节安排
本文绪论中提及到了该课题的目的意义,国内外的研究现状以及发展趋势和研究方案;第二章中写到了列车的运行过程的建模,对列车的受力进行分析;第三章是对改课题的智能优化算法研究;第四章仿真程序设计;第五章结束语;最后致谢和参考文献。
2.列车运行过程
2.1 列车运行过程建模
2.1.1 列车受力分析
列车运行过程遵循《列车牵引规程》,其中提及到了列车牵引计算的中心环节是推导列车运动方程,即研究列车运行中其加(减)速力与列车加(减)速度的相互关系,从而找出列车运行速度、运行距离、运行时间及牵引重量之间的相互关系。
列车在运行过程中受到方向和大小不同的力的作用,受力情况非常复杂,列车驾驶主要考虑纵向运动,因此仅研究影响列车纵向运行速度的力,这些力有以下三种:机车牵引力F、列车运行阻力W和列车制动力B。
(1) 牵引力
起动与加速过程均以动车组最大牵引力进行计算。因为列车运行过程中起动比较频繁,起动过程(v<0.25km/h左右)单独计算,并将这一速度内列车运行阻力视为不变的。
若起动阻力wqz=e(e为起动阻力经验常数),起动过程单位合力计算如下:
(2.1)
起动过程结束后,仍然是加速过程,这时的基本阻力计算进行。列车起动过程受到的单位合力计算如下:
(2.2)
如果要求列车加速度,首先计算列车换算质量(Mh):
(2.3)
式中,r是回转质量系数,常取0.06,M为列车质量。
然后可以得到运行列车的加速度
(2.4)
式中,a1是列车加速度(m/s^2);C是列车合力(N);Mh是列车换算质量(Kg);c是列车单位重量合力(N/KN)。
起动和加速阶段速度与距离计算公式为:
(2.5)
式中,Si、Si+1是第i和i+1步列车走行距离(m);vi、vi+1是第i和i+1步速度(m/s); t是计算步长(秒/1000)。 MATLAB列车节能运行优化算法研究(3):http://www.751com.cn/tongxin/lunwen_15384.html