摘要随着激光雷达技术的日趋成熟,其在交通测绘、环境监测、地理测绘等领域有着广泛的应用,对激光雷达点云数据进行处理是其中的一项重要内容。本文主要对激光雷达点云数据恢复的过程进行研究。 在深度资料调研的基础上, 利用课题组研发的线阵激光雷达进行了大量的外场实验,获取多组点云数据。在Matlab 软件平台上编写程序,依次对点云数据进行三维坐标变换、 噪声去除和三角网格构建操作。处理后的点云数据可恢复成较为直观的三维图像。实验结果表明,弦高差检查法、均值滤波法可以较好的去除点云数据的噪声。而点云数据三角网格的构建过程运算量巨大,短时间内未能达到预期最佳的效果。本次研究实现了激光雷达成像数据的恢复,其处理结果可为后续进一步的工作(如路径规划等)提供数据源。 42532
毕业论文关键词 线阵激光雷达 点云数据 Matlab 三角网格
Title Imaging data recovery experimental study of linear array laser radar
Abstract With the maturing of the laser radar technology, it has been widely used in the fields of traffic mapping, environmental monitoring, geographic mapping and so on. The processing of point cloud data of laser radar is an important part of it. In this paper, the process of laser radar point cloud data recovery is studied. Based on the investigation of the depth data, a large number of field experiments are carried out by using the linear array laser radar, which is used in the research group. In the Matlab software platform for the preparation of the program. The program includes three dimensional transformation of point cloud data, noise removal and triangular mesh, etc. A more intuitive three-dimensional images can be restored after the processing of point cloud data. The experimental results show that the chord inspection method, mean filtering method can effectively remove the noise in point cloud data. Triangle mesh processing of point cloud data has a huge amount of computation, and failed to achieve the desired results in a short period of time. This research has achieved the recovery of the imaging data of the laser radar, and the results can provide the data source for the further work (such as path planning).
Keywords linear array laser radar point cloud data Matlab triangular mesh
目录
1绪论.1
1.1激光雷达介绍.1
1.3本文主要研究内容.4
2激光雷达数据重建的基础理论.5
2.1三维变换.5
2.2点云数据的去噪处理.7
2.3点云数据的三维重建.9
3线阵激光雷达获取点云数据的实验11
3.1实验环境11
3.2数据采集结果分析13
4典型场景三维数据的重建与分析14
4.1数据处理流程14
4.2处理结果分析20
结论23
致谢24
参考文献25
附录A算法程序.26
1 绪论 1.1 激光雷达介绍
1.1.1 基本工作原理 激光雷达系统基本由发射系统,接收系统和数据处理系统等模块构成。激先雷达首先通过激光器发射激光束,激光束传播一定的距离后,在目标表面发生散射,反射,吸收等作用后产生了激光回波,接收系统负责对激光回波进行数据采集和光电转换,获得的数据由数据处理系统来分析处理。激光回波相当于激光雷达发射的激光束通过目标“调制”后的结果,通过数学方法对激光回波进行“解调”(反演计算),我们便可以得到目标的信息[1]。
1.1.2 激光雷达分类 激光雷达有很多种分类方式,从最根本的探测方式的角度来说,激光雷达可分为非相干探测激光雷达和相干探测激光雷达两类。相干探测激光雷达的工作方式是将激光回波与本振光在光电探测器的作用下进行相干,通过探测二者相干后所得到的中频信号从而可获得回波的频域信息,这种方式可以获取较多的回波信息,如振幅、频率和相位等等,灵敏度很高。但是相干探测对装置的条件要求较为苛刻,需要激光具有较好的单色性并且频率稳定,想要实现具有一定的技术困难。相比而言,非相干探测激光雷达对激光器和探测器的要求相对较低。非相干探测激光雷达又称为直接探测激光雷达,它可以直接获取激光回波的到达时间和强度等时域信息。虽然灵敏度相比相干探测激光雷达来说有所下降,但由于其结构简单等便利特点,目前包括本课题在内的多数研究均使用直接探测激光雷达进行实验。 线阵激光雷达成像数据恢复与实验研究+Matlab程序:http://www.751com.cn/wuli/lunwen_43027.html