quencies for flatness control therefore render static transfer
functions sufficient. Thickness (gauge) control systems, on the
other hand, operate at much higher frequencies and require
attention to the dynamic response. To account for the dynamic
nature of the rolling operation when calculating the strip
thickness profile, measured values of rolling parameters are
continually applied to the static model in order to update the
steady-state thickness profile response. Themethod to predict
strip profile presented in this work employs a global stiffness-
based linear system, and can therefore, if required, be used
together with an appropriate mass matrix to predict dynamic
responses of the rolling mill using well-known methods.
3. A new method to calculate strip crown
Presented is a new technique to model the static deflection
of the rolling mill components and compute the strip thick-
ness profile. The new method combines the conventional
finite element method with analytical solid mechanics and
is applicable to cluster-type mill configurations such as the
20-high Sendzimir mill. In addition, it accommodates the摘要:
为预测在冷轧金属带材的静态横截面厚度分布曲线而提出的一项新计算法。这种算法用提高效率和准确度来塑造板形和相关平整度以保持实现高质量的平轧产品。新算法涉及到一个新的组合,含有多个耦合温克勒弹性地基上的季莫申科梁有限元。在除了复杂的轧机类型,如20辊的森吉米尔轧机,还适用于简单的轧机配置,如普通的4辊轧机。比传统的板形模型的固有优势包括:非离散的弹性地基,立方位移场,快速的解决方案,混合边界条件。该模型的灵活特性,使得它能够很容易地适应典型的机制,用于工业,板形控制,如辊加冕,弯辊,窜辊,轧辊横移。与4辊轧机的位移预测比较,使用了大规模的有限元模拟得到可以提供实时工业应用所需要的板形预测方法。
轧机中板形英文文献和翻译(4):http://www.751com.cn/fanyi/lunwen_2251.html