Therefore, all PMV responses lie in the acceptable range, i.e. -1< PMV <+1. Also according to the results, for the best cooling coil configuration design,42% of the votes are for PMV < 0.5 and 100% of the votes for PMV < 0.94 which means this design is able to save energy significantly while can maintain PMV values in a standard range. 5 Conclusion In this paper, we have addressed the modeling and optimization problem of a cooling coil to target energy savings in a commercial building HVAC system. Simulation has been carried out to investigate the influence of cooling coil optimum design on energy demand and comfort conditions. The simulation modules were developed by using monitored data which were collected experimentally from the existing central cooling plant of the real-world commercial building located in a hot and dry climate region. An optimization algorithm which uses an iterative redesign procedure is developed and implemented on TRNSYS in order to determine and select the optimum configu-ration of the cooling coil. Results show that the new optimum design of the cooling coil offers energy saving potential up to 9.3% while maintaining the thermal comfort conditions in the building. References Perez-Lombard, L., Ortiz, J., Pout, S.: A Review on Building Energy Consumption Informa-tion. Energy and Buildings 40, 394–398 (2008) Jabardo, J.M.S., Bastos Zoghbi Filho, J.R., Salamanca, A.: Experimental Study of the Air Side Performance of Louver and Wave Fin-Tube Coils. Experimental Thermal and Fluid Science 30, 621–631 (2006) Sekhar, S.C., Tan, L.T.:
Optimization of Cooling Coil Performance During Operation Stages for Improved Humidity Control. Energy and Buildings 41, 229–233 (2009) Cai, W.J., Wang, Y.W., Soh, Y.C., Li, S.J., Lu, L., Xie, L.: A Simplified Modeling of Cooling Coils for Control and Optimization of HVAC Systems. Energy Conversion and Manage-ment 45, 2915–2930 (2004) TRNSYS software, A Transient System Simulation Program, version 16, Wisconsis-Madison University, http://sell.me.wisc.edu/trnsys/ Vakiloroaya, V., Zhu, J.G., Ha, Q.P.: Modeling and Optimization of Direct Expansion Air Conditioning Systems for Commercial Buildings Energy Savings. In: Int. Symposium on Automation andRobotics in Construction, Seoul, Korea (2011) American Society of Heating, Refrigerating and Air-Conditioning Inc, ANSI/ASHRAE Stan-dard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Com-puter Program (2007) American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc, ASHRAE Fundamentals Handbook, Atlanta, GA (2005) American Society of Heating, Refrigerating and Air-Conditioning Inc, ASHRAE Standard 55: Thermal Environment Conditions for Human Occupancy (2010) International Organization for Standardization, ISO Standard 7730: Moderate Thermal Envi-ronment, Determination of PMV and PPD Indices and Specifications of the Conditions for Thermal Comfort, Geneva, Switzerland (2005)
摘要. 在设计一个节能的空调系统时,几个因素起着重要的作用。其中,冷却盘管通过其配置展现的性能直接影响暖通空调系统的性能,而且是至关紧要的。这篇文章通过模拟优化的方法探讨和建议设计改进冷却盘管的几何结构对于中央冷却系统的贡献 。一个实际的位于炎热和干燥气候条件下的商业建筑的中央冷却装置将会被用于实验和数据采集。在瞬态系统模拟程序中创建一个算法来预测出最佳设计。得到的实验结果来和预测结果来比较验证这个模型,然后建立几种新冷却盘管设计方案的模型去评估设计改进的潜力。之后,计算机模型会预测冷却盘管的几何变化会怎么影响建筑环境条件和暖通空调系统的能量损耗。
毕业论文关键词:冷却盘管、设计优化、节能、舒适的提高。
1.引言
建筑采暖、通风的能量消耗增加引发了大量针对空调系统能源储蓄的研究。随着人体对舒适要求的加剧,暖通空调系统已经成为一个不可避免的支出,约占建筑能源消耗50%,在发达国家大约占10-20%的能源消费总量(Perez-Lombard et al . 2008年)。因为建筑的冷却负荷随着时间变化,暖通空调系统必须伴随着一个最佳的设计方案来降低能量损耗,通过保证在任何负荷状态下过程变量在他们的有效设定值之内来保持舒适感。实现能源效率的有效途径之一是设计一个正确的冷却盘管结构,这激发我们提出一个设计方法来明显降低空调能耗。因此,暖通空调节能部件的设计受到这么多关注并非偶然。(Jabardo et al. 2006)通过一项对于商业用途的空气盘管的调查指出他们的直径是12.7mm。他们使用了不同的散热间距和真空管行数测试盘管来确定他们对热力性能的影响 暖通空调系统节能英文文献和中文翻译(4):http://www.751com.cn/fanyi/lunwen_32988.html