(3) 深度氧化技术
又称高级氧化技术,深度氧化最显著的特点是以羟基自由基为主要氧化剂与有机物发生反应,反应中生成的有机自由基可以继续参加•HO的链式反应,或者通过生成有机过氧化自由基后,进一步发生氧化分解反应直至降解为最终产物CO2和H2O, 从而达到氧化分解有机物的目的。与其他传统的水处理方法相比,高级氧化法具有以下特点:产生大量非常活泼的羟基自由基•HO其氧化能力(2.80v)仅次于氟(2.87),它作为反应的中间产物,可诱发后面的链反应,羟基自由基与不同有机物质的反应速率常数相差很小,当水中存在多种污染物时,不会出现一种物质得到降解而另一种物质基本不变的情况;•HO无法选择地直接与废水中的污染物反应将其降解为二氧化碳、水和无害物,不会产生二次污染;普通化学氧化法由于氧化能力差,反应有选择性等原因,往往不能直接达到完全去除有机物降低TOC和COD的目的,而高级氧化法则基本不存在这个问题,氧化过程中的中间产物均可以继续同羟基自由基反应,直至最后完全被氧化成二氧化碳和水,从而达到了彻底去除TOC、COD的目的;由于它是一种物理化学过程,很容易加以控制,以满足处理需要,甚至可以降低10-9级的污染物;同普通的化学氧化法相比,高级氧化法的反应速度很快,一般反应速率常数大于109mol-1Ls-1, 能在很短时间内达到处理要求;既可作为单独处理,又可与其他处理过程相匹配,如作为生化处理的预处理,可降低处理成本。
它是汇集了现代光、电、声、磁、材料等各相近学科的最新研究成果,主要包括电化学氧化法、湿式氧化法、超临界水氧化法、光催化氧化法和超声降解法等。其中紫外光催化氧化技术具有新颖、高效、对废水无选择性等优点,尤其适合于不饱合烃的降解,且反应条件也比较温和,无二次污染,具有很好的应用前景。与紫外线、热、压力等处理方法相比,超声波对有机物的处理更直接,对设备的要求更低,作为一种新型的处理方法,正受到越来越多的关注。肖广全等用超声波-好氧生物接触法处理制药废水,在超声波处理60s,功率200w的情况下,废水的COD总去除率达96%。
(4) 臭氧氧化法
由于臭氧具有极强的氧化能力,其氧化产物一般对环境污染很小,因此臭氧氧化法及其联合技术在废水处理中的广泛应用,对许多难降解的有机物具有较好的降解功效。臭氧氧化法在制药废水预处理中有着广泛的应用价值,但是,臭氧氧化反应具有一定的选择性,对TOC和CODcr去除不高。
1.2.3 制药废水生化处理方法
生化处理技术是目前制药废水广泛采用的处理技术,包括好氧生物法、厌氧生物法、好氧-厌氧等组合方法。
(1) 好氧生物处理
利用好氧微生物(包括兼性微生物)在有氧气存在的条件下进行生物代谢以降解有机物,使其稳定、无害化的处理方法。微生物利用水中存在的有机污染物为底物进行好氧代谢,经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求,以便返回自然环境或进一步处理。污水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。
由于制药废水大多是高浓度有机废水,进行好氧生物处理时一般需对原液进行稀释,因此动力消耗大,且废水可生化性较差,很难直接生化处理后达标排放,所以单独使用好氧处理的不多,一般需进行预处理。常用的好氧生物处理方法包括活性污泥法、深井曝气法、吸附生物降解法(AB法)、接触氧化法、序批式间歇活性污泥法(SBR法)、循环式活性污泥法(CASS法)等。 活性炭和过硫酸钠废水深度处理技术实验(6):http://www.751com.cn/huaxue/lunwen_1406.html