5.2.1 节点定位功能测试 31
5.2.2 误差分析功能测试 31
6 结束语 32
致谢 33
参考文献 34
1 绪论
1.1 研究背景
更小、更廉价的低功率计算设备代表的“后PC时代”冲破了传统台式计算机和高性能服务器的设计模式:普遍的网络化带来的计算处理能力是难以估量的;微机电系统(Micro-electro-mechanism System,简称MEMS)的迅速发展奠定了设计和实现片上系统(System On Chip,简称soc)的基础,以上3方面的高度集成又孕育出很多新的信息获取和处理模式,无线传感器网络就是其中一例。
无线传感器网络(Wireless SensorNetworks,简称WSN)就是由布置在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统,其目的是协作地感知、采集和处理网络覆盖区域中对象的信息。微电子、网络和无线通信等技术的进步,推动了低功率、多功能传感器的快速发展,使其在微小体积内能够集成信息采集、数据处理和无线通信等多种功能。传感器网络具有广阔的应用前景,能广泛用于军事、环境监测和预报、城市交通、建筑物状态监控以及医疗护理等领域。
通过布置大量传感器节点于监测区域,传感器网络将改变我们与客观世界的交互方式。但是位置信息是传感器节点采集信息中不可缺少的部分,没有位置信息的监测信息通常是无意义。因此,确定获取信息的节点位置是传感器网络最基本的功能之一,对传感器网络应用的有效性起着关键的作用。如在环境监测应用中需要知道采集的环境信息所对应的具体区域;对于突发事件,如需要知道森林火灾的现场位置,战场上敌我车辆运动的区域,化工管道泄漏的具体地点等。对于这些问题,传感器节点必须首先知道自身的地理位置,这是进一步采取措施的基础。另一方面,传感器节点位置信息的获得又可以优化网络在其它方面的应用,比如提高网络路由效率、向布置者报告网络的覆盖质量、实现网络的负载均衡和网络拓扑的自配置等。在传感器网络中,传感器节点存在着能量有限、可靠性差、节点规模大且随机布放、无线模块的通信距离有限等特点,传统的定位技术无法很好得适用于传感器网络。全球定位系统(Global Position System,简称GPS)成本和能耗高,限制了它在无线传感器网络中的应用。局部定位系统(Local Position System,简称LPS)需建立高性能的基站设施,这对大多数低配置的传感器网络来说无疑是昂贵的负担。因此,必须针对无线传感器网络节点的低成本、低能耗和通信能力有限的特点设计有效的定位算法。
1.2 项目开发意义
随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。但是受定位时间、定位精度以及复杂室内环境等件的限制,比较完善的定位技术目前还无法很好地利用。因此,专家学者提出了许多室内定位技术解决方案,如A-GPS定位技术、超声波定位技术、蓝牙技术、红外线技术、射频识别技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等等。这些室内定位技术从总体上可归纳为几类,即GNSS技术(如伪卫星等),无线定位技术(无线通信信号、射频无线标签、超声波、光跟踪、无线传感器定位技术等),其它定位技术(计算机视觉、航位推算等),以及GNSS和无线定位组合的定位技术(A-GPS或A-GNSS)。由于在室内环境下对于不同的建筑物而言,室内布置,材料结构,建筑物尺度的不同导致了信号的路径损耗很大,与此同时,建筑物的内在结构会引起信号的反射,绕射,折射和散射,形成多径现象,使得接收信号的幅度,相位和到达时间发生变化,造成信号的损失,定位的难度大。虽然室内定位是定位技术的一种,和室外的无线定位技术相比有一定的共性,但是室内环境的复杂性和对定位精度和安全性的特殊要求,使得室内无线定位技术有着不同于普通定位系统的鲜明特点,而且这些特点是户外定位技术所不具备的。因此,两者区域的标识和划分标准是不同的。基于室内定位的诸多特点,室内定位技术和定位算法已成为各国科技工作者研究的热点。如何提高定位精度仍将是今后研究的重点。 C#室内无线传感器网络定位系统设计(2):http://www.751com.cn/jisuanji/lunwen_11461.html