表1.1 种换热器综合性能对比
换热器类型 紧凑性/
经济性/
价格比
DN DN DN DN DN DN
400 800 1200 400 800 1200
固定管板式 47 55 60 44 32 31 1.0
U型管式 32 45 47 50 40 37 1.1~1.25
浮头式 37 45 48 64 48 40 1.2~1.5
在同等条件下,固定管板式换热器结构最紧凑,U 形管式和浮头式换热器相当。固定管板式换热器最经济,浮头式换热器较差。若工况允许,选择换热器的次序为固定管板式、U 形管式、浮头式[7]。
1.5 列管式换热器的强化传热技术
上个世纪70年代初发生的世界性能源危机,有力地促进了换热强化技术的发展。为了节能降耗,提高工业生产的经济效益,要求开发适用不同工业过程要求的高效能换热设备。而强化换热元件的研究是新型高效换热设备设计制造的基础。因此,二十余年来,强化传热技术和换热器的开发与研究始终是人们关注的课题[8]。当今换热器的发展以计算流体力学、模型化技术、强化传热技术及新型换热器开发形成了一个高技术体系[9]。
换热器的强化传热就是力求使换热器在单位时间内,单位传热面积传递的热量达到最多。应用强化传热技术的目的是: 提高现有换热器的换热能力; 减小设计传热面积,以减小换热器的体积和质量; 减小换热器的阻力,以减小换热器的动力消耗; 使换热器能在较低温差下工作。由传热过程分析可知,单位时间内传热量如下式所示: 。可见,增大传热面积A 、传热系数K 和平均温差 都可以增大传热量 。强化传热主要有3 种途径: 提高传热系数,增大传热温差和扩大传热面积。
(1)合理优化结构,如采用合适的内外导流筒,增大有效传热面积。
(2)增大传热的扩展表面,如在管内外增加肋片或翅片,提高单位容积内设备的换热面积来增强换热。
(3)1将管壳式换热器串联增大换热面积。2传热平均温差的大小主要由冷热两种流体的温度所决定,当两边流体均为变温的情况下,应当尽可能考虑从结构上采用逆流和接近逆流的流向以得到较大的 值。3传热过程中,各热阻与总传热系数关系如下
要增大总传热系数,就要设法减小对K值影响较大的项。如果污垢热阻较大时,则应主要考虑如何防止或延缓垢层的形成或使污垢层清洗方便当hi和ho 差别不大时,最好能同时提高两流体的对流换热系数; 而当两者差别较大时,要设法增大换热系数较小的一项。
1.6 研究内容
本文的研究内容主要包括总体方案的确定,包括物性参数确定,换热器筒体结构、管箱、封头结构计算,折流板、法兰、支座,强度校核等。利用列管式换热器的了解和分析,结合物性参数与粗苯的特性,通过列管式换热器的类型标准和结构的确定,首先对换热器的筒体结构进行确定,按精度规定直径公差,确定其壁厚,查手册确定其壳体,管箱和封头尺寸;确定折流板,支撑板形式,然后对其进行布置,去折流板间距,查表计算折流板尺寸大小,厚度等;对法兰的形式选用进行查表,按设计规定计算法兰强度;确定支座形式,按设计规定进行其尺寸设计等。基本完成列管式换热器的设计后,最后进行强度校核,装配图零件图的绘制,完成毕业设计。 列管式冷却器的设计+CAD图纸(3):http://www.751com.cn/jixie/lunwen_11566.html