摘要本文针对毁伤工况下的ICP型压力传感器工作特性参数不准确的问题,开展了冲击波压力传感器系统标定方法研究。由于冲击压力测试系统的零频及低频特性不佳,不宜采用静态校准获得系统工作参数,因此本文将基于落锤液压标定的准静态校准原理,设计适用于冲击波压力测量系统的摆锤液压校准装置。48913
根据冲击波压力现场校准的技术要求,校准装置产生的半正弦压力峰值为 ,脉宽为 。另一方面,在现场校准时,校准装置的供电无法得到保证,因此校准装置在有供电和无供电的情况下均具有以下功能:提升摆锤、固定摆锤、自由释放摆锤、防二次撞击等。
本文对半正弦压力信号发生器进行了理论分析,通过数学模型分析确定了摆锤重量、摆杆长度、摆杆下落角度等结构参数与造压油缸压力幅值 及压力脉宽τ的关系。由此获得摆锤准静态校准装置的主要结构参数。
为确保摆锤式冲击波压力现场校准装置的可靠运行,本文对装置采用的蜗轮蜗杆减速装置、蜗轮蜗杆支撑轴、驱动电机等零部件进行了强度、功率等性能校核。根据理论分析结果,本文设计的摆锤式冲击波压力现场校准装置能够满足校准技术要求,并能可靠工作。
关键词 冲击波压力 准静态校准 摆锤 半正弦压力信号发生器
毕业论文设计说明书外文摘要
Title The Design of Quasi-static Calibration Device of Shock Wave Pressure Sensor System.
Abstract
In this thesis, the calibration methods of the shock wave pressure measurement system are introduced and discussed below. Because of the zero-frequency and low-frequency characteristics of the piezoelectric pressure testing system, fitting badly for static calibration, the quasi-static calibration method was adopted. Based on the dropping hammer hydraulic quasi-static calibration method, the pendulum hydraulic calibration device was designed for shock wave pressure measurement system.
Firstly, the theory of the semi-sinusoid pulse generator is analyzed and introduced. The relationship between the the weight of the pendulum, the length of the pendulum stick. Then the pendulum dropping angle and the pressure pulse amplitude of was probed. The structural configuration parameters of pressure generating device were determined through the analyzation.
The quasi-static hydraulic pressure of the pendulum calibrating device was designed, including the realizations of between each mechanical module were studied to determine the mechanical structure parameters, determining worm gear driving system as solutions.
The pendulum quasi-dynamic pressure calibrating device is on the basis of the worm gears tooth contact fatigue strength structural designing, and the verification of the tooth root bending fatigue strength. Working on the worm driving force analysis of the worm. The transmission efficiency of the worm was calculated.
Considering the parts mounted on the shaft, the worm shaft and the rocker shaft was designed and arranged. Finally, the shaft fatigue strength was verification, and the flat keys and etc. installed on the shaft were calculated and checked.
Keywords: shock wave,quasi-static calibration, pendulum, semi sinusoidal pressure signal generator.
目 录
1 绪论 1
1.1 本课题的研究背景及意义 1
1) 冲击波压力传感系统准静态校准装置设计:http://www.751com.cn/jixie/lunwen_51662.html