摘要:50年代后线性规划作为一种决策最优方案的工具应用范围不断扩大。是人们在对军事、经济等部门进行科学管理时的一种辅助的数学方法。已被广泛的应用在现有的科学技术和数学方法的理论中,在求解实际问题时,在求解最优方案和决策时为决策人员提供了极大的支持。本篇文章主要论述了线性规划的算法及其在实际生活中的几种典型的应用及算法在MATLAB中的实现现。如在运输问题中的应用,为了合理的安排人力、物力等资源,使经济效果达到最好,则通过线性规划计算最优的方案。求解模型通过使用LINGO计算机软件得出并分析结果,分析模型的“影子价格”。在选址问题上,本毕业论文通过运用线性规划方法,建立了两种某物流园区运输选址的线性规划数学模型,并运用MATLAB软件进行线性规划求解,最终分析两种方案的优劣,得到最优的选址方案。21267
毕业论文关键词:线性规划的算法、最优方案、MATLAB、应用、LINGO、影子价格
Applications of linear programming algorithm and its MATLAB realization
Abstract:After the 1950s, Linear Programming is regarded as an optimization tool and the scope of its application continues to expand such as in military, economic and other areas. It is also a mathematical method to help people to achieve a scientific management and has been widely used in the existing science and technology and mathematical methods to solve practical problems and help decision makers choose the best solution and decision making. This article discusses the linear programming algorithm which is implemented by MATLAB and some typical applications in real life. Such as transportation, linear programming method is used to arrange the manpower and material resources reasonably to make the best of the economic effect. The LINGO software is used to get the results and the analysis model of shadow price. On the location problem, the method of linear programming is used to establish two kinds of selection location method of park transportation,and the linear programming is solved by using MATLAB software. Finally, we analysis the merits of the two kinds of program and get the optimal location.
Keywords: Linear programming algorithm, the optimal scheme, MATLAB, application,LINGO the shadow price
目录
1 引言 1
1.1 课题的目的和意义 1
1.2 国内外研究现状与发展趋势 1
1.3 文献综述 2
1.4 论文研究主要内容 3
2 背景知识介绍 3
2.1线性规划 3
2.2运输问题 4
2.3选址问题 5
2.4线性规划几种常见的模型 5
2.5小结 7
3线性规划求解实际问题 7
3.1运输问题 7
3.1.1问题概述 7
3.1.2实际问题模型建立及求解 8
3.1.3结果分析 11
3.1.4运输问题“影子价格” 11
3.2选址问题 13
3.2.1问题概述 13
3.2.2实际问题模型建立及求解 14
3.2.3结果分析 16
4总结 17
5参考文献 17
6致谢 18
7附录 18
1 引言
1.1 课题的目的和意义
线性规划主要解决的问题是决策多个变量的最优问题,是一种有效的、科学合理的数学方法,在各个多变量约束条件下互不独立,决策或解决线性目标函数在一个对象的情况下的最优解的问题,即在有限的人力、物力和资源的情况下,怎样运用线性规划达到最大的经济效益。 线性规划算法的应用及其MATLAB实现:http://www.751com.cn/shuxue/lunwen_13396.html