菜单
  
    Abstract:Scheduling for tandem cold mills refers to the determination of inter-stand gauges, tensions and speeds of a specified product. Optimal schedules should result in maximized throughput and minimized operating cost. This paper presents a genetic algorithm based optimization procedure for the scheduling of tandem cold rolling mills. The optimization procedure initiates searching from a logical staring point Ð an empirical rolling schedule Ð and ends with an optimum cost. Cost functions are constructed to heuristically direct the genetic algorithm's searching, based on the consideration of power distribution, tension, strip flatness4508
    and rolling constraints. Numerical experiments have shown that the proposed method is more promising than those based on semi-empirical formulae. The results generated from a case study show that the proposed approach could significantly improve empirically derived settings for the tandem cold rolling mills. © 2000 Elsevier Science Ltd. All rights reserved.
    Keywords: Rolling schedules; Evolutionary algorithms; Tandem cold rolling; Process optimization
    1.    Introduction
    Automation systems for tandem cold rolling mills are continuously being improved due to today's stringent high throughput, quality and low scrap loss requirements for products. To consolidate competitive strengths in the global market, many steel companies are engaged in maximizing the reduction and consequently minimizing the cost of manufacture (Bryant, 1973; Yuen and Nguyen, 1996; Ozsoy et al., 1992). Rolling scheduling is an important aspect in the operation of tandem cold rolling mills. It defines stand reductions, tensions, rolling forces, roll torque, mill maximum speeds, and threading adjustments. The optimized scheduling should lead to improved thickness, surface finish and shape performance of the products.
    In the last two decades, only a few papers have addressed the rolling scheduling problem, especially for tandem cold rolling (Wang et al., 1998). An early work has led to the development of mill scheduling systems achieving correct output and satisfactory shape in a tandem cold rolling mill. The scheduling is described as a constrained two-point boundary-value problem that is solved using conjugate gradient and projection techniques. The cost functions defined for the optimization problem include the strip shape cost, tension cost and thermal-crown cost. Although the results generated from the optimized schedules are better than those from the original empirical schedules, power cost is not considered, while a uniform power distribution is desirable for the tandem cold rolling mills. Moreover, the calculation of the costs relies mostly on some linear equations, with linear coefficients given to the rolling parameters. Although the conjugate gradient methods are frequently used in practice, even when the cost function for the optimization problem is not convex, there are reasons to believe that such use leads to the computation of a local minimum (Polak, 1971; Luenberger, 1984; Nash and Ariela, 1996). The computing equipment available at that time also limits the calculation capacity. Ozsoy et al. employed a nonlinear programming method called the hill-climbing algorithm to optimize rolling schedules for a hot rolling process. The results show
    that although the optimization problem cannot be solved in a closed form because of the non-linearity of the defining equations and the amplitude constraints on the system variables, it can be solved numerically on a digital computer by nonlinear programming. However, the convergent behavior of the nonlinear programming method employed in (Ozsoy et al., 1992) is directly affected by the initial searching point used. Some other nonlinear programming methods, such as sequential quadratic programming, also have a number of disadvantages besides their added complexity (derivative calculations, etc.), such as the local minimum  problem, nonguaranteed convergence, and expensive calculation cost. As an intelligent searching mechanism, genetic algorithms (GA) have potential, and seem to be flexible enough to overcome the abovementoined disadvantages.
  1. 上一篇:水源热泵中央空调英文文献和翻译
  2. 下一篇:带搅拌器的机械密封容器英文文献和翻译
  1. 冷轧机的发展英文文献和中文翻译

  2. 启发式算法热轧机铝英文文献和中文翻译

  3. 轧机分切机英文文献和中文翻译

  4. 热轧机英文文献和中文翻译

  5. 轧机中板形英文文献和翻译

  6. 轧机英文文献和翻译

  7. 机械电子轧机的空间振动英文文献和翻译

  8. 河岸冲刷和泥沙淤积的监测国内外研究现状

  9. 电站锅炉暖风器设计任务书

  10. 大众媒体对公共政策制定的影响

  11. 乳业同业并购式全产业链...

  12. 酸性水汽提装置总汽提塔设计+CAD图纸

  13. 当代大学生慈善意识研究+文献综述

  14. java+mysql车辆管理系统的设计+源代码

  15. 杂拟谷盗体内共生菌沃尔...

  16. 十二层带中心支撑钢结构...

  17. 中考体育项目与体育教学合理结合的研究

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回