菜单
  

    Consequently in this paper, the cold rotary forging and conventional forging process of a cylindrical workpiece is simulated by the elastic-plastic dynamic explicit FE method under the ABAQUS software environment. Through simulation, the deformation characteristics and mechanism of cold rotary forging are given and the difference between cold rotary forging and conventional forging is clarified in detail. The research results provide useful theoretical and experimental guidelines for the cold rotary forging process.
     Results and discussion
     Metal flow analysis
    Fig. 7 shows the comparison of mesh deformation between conventional forging and cold rotary forging. It can be seen from Fig. 7(b) that in conventional forging, the metal only flows along two directions. One is the axial flow, resulting in thinning in the axial height of the cylindrical workpiece, and the other is the radial flow, leading to the expansion in diameter of the cylindrical workpiece. Obviously, metal flow does not exist in the circumferential direction. That is, because of the symmetry of geometry and boundary conditions, the deformation of the cylindrical workpiece exhibits the characteristic of axial symmetrical deformation and thus conventional forging can be simplified as a 2D deformation process. In cold rotary forging, besides the axial and radial flow, the metal also flows along the circumferential direction, as shown in Fig.7 (c). Therefore, cold rotary forging is an asymmetrical deformation process and thereby the 3D analytical model has to be proposed to investigate the forming process. 
     Contact area between the dies and cylindrical workpiece
    In conventional forging, the workpiece contacts with the upper and lower die completely at any time of the process. During the cold rotary forging process, the workpiece contacts the dies only partially because the upper die is a conical die. Furthermore, the contact area has been shifting continuously due to the oscillation of the upper die. Thus, the contact area exhibits a much complex and changeable geometry shape and thereby has an essential effect on the cold rotary forging process. Fig. 8 shows the contact area comparison between cold rotary forging and conventional forging. In conventional forging, the contact area between the upper die and workpiece is identical with that between the lower die and workpiece. It is clear that the contact area increases quasi-linearly from a certain value to the maximum value. Moreover, the curve is very smooth with time, indicating that the cylindrical workpiece is in a steady deformation state. Different from conventional forging, the contact area between the dies and workpiece in cold rotary forging is obviously different. The two curves can be pided into three different stages. At the beginning of cold rotary forging, the upper die begins to contact the workpiece, so the contact area between the upper die and workpiece increases rapidly from zero to a certain value while the contact area between the lower die and workpiece decreases significantly. As the forming process continues, the cylindrical workpiece has entered the steady deformation state; thus the contact area increases slowly up to the maximum value. At the end of the process, the lower die stops the axial feed while the upper die still oscillates, resulting in the sharp decrease in the contact area. Furthermore, it can be found that the two curves have been oscillating with time, indicating that cold rotary forging is a complex dynamic contact, highly nonlinear and non-steady-state deformation process. It can be also observed that the contact area between the upper die and workpiece is always smaller than that between the lower die and workpiece, thus leading to the higher axial unit pressure on the metal near the upper die. Under this circumstance, the metal near the upper die is easier to satisfy the yield condition to be involved in the plastic deformation state. From the above analysis, it can be concluded that the contact pattern, the shape and size of contact area between cold rotary forging and conventional forging are obviously different, thus resulting in the different deformationcharacteristics between them.
  1. 上一篇:供热通风与空气调节系统英文文献和中文翻译
  2. 下一篇:邮政包裹分拣系统英文文献和中文翻译
  1. 汽车乘员舱的声振耦合英文文献和中文翻译

  2. 立体光照成型的注塑模具...

  3. 低频振动的铁路车轴的状...

  4. 接头的形状对沥青塞接头...

  5. 电-气动驱动的垂直计算机...

  6. 流量测量系统英文文献和中文翻译

  7. 开口端纺纱系统中的锥形...

  8. java+mysql车辆管理系统的设计+源代码

  9. 大众媒体对公共政策制定的影响

  10. 当代大学生慈善意识研究+文献综述

  11. 电站锅炉暖风器设计任务书

  12. 十二层带中心支撑钢结构...

  13. 酸性水汽提装置总汽提塔设计+CAD图纸

  14. 河岸冲刷和泥沙淤积的监测国内外研究现状

  15. 杂拟谷盗体内共生菌沃尔...

  16. 中考体育项目与体育教学合理结合的研究

  17. 乳业同业并购式全产业链...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回