菜单
  

    For warpage analysis, nodal displacements and curvatures for shell elements are expressed as:
     
    where [k] is the element stiffness matrix, [Be] is the derivative operator matrix, {d} is the displacements, and {re} is the element load vector which can be evaluated by:
     
    The use of a full three-dimensional FEM analysis can achieve accurate warpage results, however, it is cumbersome when the shape of the part is very complicated. In this paper, a two dimensional FEM method, based on shell theory, was used because most injection-molded parts have a sheet-like geometry in which the thickness is much smaller than the other dimensions of the part. Therefore, the part can be regarded as an assembly of flat elements to predict warpage. Each three-node shell element is a combination of a constant strain triangular element (CST) and a discrete Kirchhoff triangular element (DKT), as shown in Fig. 3. Thus, the warpage can be separated into plane-stretching deformation of the CST and plate-bending deformation of the DKT, and correspondingly, the element stiffness matrix to describe warpage can also be pided into the stretching-stiffness matrix and bending-stiffness matrix.
     
    Fig. 3a–c. Deformation decomposition of shell element in the local coordinate system. a In-plane stretching element b Plate-bending element c Shell element
    3 Experimental validation
    To assess the usefulness of the proposed model and developed program, verification is important. The distortions obtained from the simulation model are compared to the ones from SL injection molding experiments whose data is presented in the literature [8]. A common injection molded part with the dimensions of 36×36×6 mm is considered in the experiment, as shown in Fig. 4. The thickness dimensions of the thin walls and rib are both 1.5 mm; and polypropylene was used as the injection material. The injection machine was a production level ARGURY Hydronica 320-210-750 with the following process parameters: a melt temperature of 250 ◦C; an ambient temperature of 30 ◦C; an injection pressure of 13.79 MPa; an injection time of 3 s; and a cooling time of 48 s. The SL material used, Dupont SOMOSTM 6110 resin, has the ability to resist temperatures of up to 300 ◦C temperatures. As mentioned above, thermal conductivity of the mold is a major factor that differentiates between an SL and a traditional mold. Poor heat transfer in the mold would produce a non-uniform temperature distribution, thus causing warpage that distorts the completed parts. For an SL mold, a longer cycle time would be expected. The method of using a thin shell SL mold backed with a higher thermal conductivity metal (aluminum) was selected to increase thermal conductivity of the SL mold.
     
    Fig. 4. Experimental cavity model
     
    Fig. 5. A comparison of the distortion variation in the X direction for different thermal conductivity; where “Experimental”, “present”, “three-step”, and “conventional” mean the results of the experimental, the presented simulation, the three-step simulation process and the conventional injection molding simulation, respectively.
     
    Fig. 6. Comparison of the distortion variation in the Y direction for different thermal conductivities
     
    Fig. 7. Comparison of the distortion variation in the Z direction for different thermal conductivities
     
    Fig. 8. Comparison of the twist variation for different thermal conductivities
    For this part, distortion includes the displacements in three directions and the twist (the difference in angle between two initially parallel edges). The validation results are shown in Fig. 5 to Fig. 8. These figures also include the distortion values predicted by conventional injection molding simulation and the three-step model reported in [3].
    4 Conclusions
    In this paper, an integrated model to accomplish the numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. For verification, an experiment is also carried out with an RP fabricated SL mold.
  1. 上一篇:蠕动运动蠕虫仿生机器人英文文献和翻译
  2. 下一篇:注塑模的单浇口优化英文文献和中文翻译
  1. 立体光照成型的注塑模具...

  2. 注射成型机配置设计英文文献和中文翻译

  3. 异型件缠绕成型的研究英文文献和中文翻译

  4. 塑料成型生产过程中形成...

  5. 薄壁注塑成型翘曲英文文献和中文翻译

  6. 注射成型模具英文文献和中文翻译

  7. 塑料模具注射成型英文文献和中文翻译

  8. 河岸冲刷和泥沙淤积的监测国内外研究现状

  9. 当代大学生慈善意识研究+文献综述

  10. 大众媒体对公共政策制定的影响

  11. 酸性水汽提装置总汽提塔设计+CAD图纸

  12. java+mysql车辆管理系统的设计+源代码

  13. 电站锅炉暖风器设计任务书

  14. 十二层带中心支撑钢结构...

  15. 中考体育项目与体育教学合理结合的研究

  16. 杂拟谷盗体内共生菌沃尔...

  17. 乳业同业并购式全产业链...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回