菜单
  

    A software system to implement the coding system has also been developed. Attempts were also directed towards the automation of the mold design process by capturing experience and knowledge of engineers in the field. The development of a concurrent mold design system is one such approach that attempts to develop a systematic methodology for injection mold design processes in a concurrent engineering environment.  The objective of their research was to develop a mold development process that facilitates concurrent engineering-based practice, and to develop a knowledge-based design aid for injection molding mold design that accommodates manufacturability concerns, as well as product requirements.
    Researchers have been trying to automate the mold design process either by capturing only the deterministic information on the mold design process or the non-deterministic information, in various ways.  This research uniquely attempts to develop a mold design application that captures information in both forms; deterministic and non-deterministic.
    2.2 Approach Adopted
    In order to develop an intelligent mold design tool, the conventional method of designing molds is studied. The application developer and the design engineer work together in designing a mold for a particular plastic part. During this time, the approach adopted by the engineer to select the mold base is closely observed and aspects of the selection process that require his knowledge/experience are identified. Also, there will be times when the engineer will refer to tables and handbooks in order to standardize his selection process. This time consuming process is also recorded to incorporate it later in the application.
    Formulating the problem for the application in terms of inputs and outputs is the next stage. This involves defining what information about the mold layout is most required for the user and also the minimum number of inputs that can be taken from him to give those outputs.
    Based on the information gathered in the mold design exercise, the conventions followed by the engineer are transformed into if-then rules. Decision tables are used to account for all possible cases that arise when dealing with a particular aspect of the mold design process. The rules so framed are then organized into modules interacting with each other, using an application development environment. Finally the application is tested for its validity when it comes to designing molds for plastic parts manufactured in the industry.
    2.3 Selection of Appropriate Mold Base
    Typically, selection of appropriate mold base for manufacturing a plastic part involves
    Estimating the number of cavities  
    The number of cavities is decided depending on the number of parts required within a given time. There are also other issues like the plasticizing capacity of the machine, reject rate etc that affect the number of cavities to be present in the mold base.
    Deciding on the presence of inserts and their dimensions
    Inserts facilitate the reusability of the mold base and therefore help in reducing cost of manufacturing. When it comes to selecting the dimensions and the number, a decision is made depending on the reusability of existing old inserts and cost of ordering new ones.
    Determining the size and location of runners
    The runner size depends on the material being molded. Although there are other considerations material properties determines the channel size required for its flow. Location of runners mainly depends on the topology of runners being used. Though a circular runner system is always preferable, the branched runner system that avoids runner balancing is the one most widely used.
    Determining the diameter of sprue
    The diameter of the sprue is decided based on the size of the mold, number of cavities, or the amount of plastic that is to be filled within a given time.
    Locating gates
    Plastic enters the cavity at a point where it can uniformly fill the cavity. A gate can be located at any point on the perimeter of a circular cavity but has to enter at the midsection when it comes to filling rectangular cavities.
  1. 上一篇:振动模具配件改善注塑模具英文文献和中文翻译
  2. 下一篇:塑料注塑模具英文文献和中文翻译
  1. 立体光照成型的注塑模具...

  2. 注射成型机配置设计英文文献和中文翻译

  3. 塑料制品的注塑模具设计...

  4. 异型件缠绕成型的研究英文文献和中文翻译

  5. 塑料注射模具设计U型铣槽...

  6. 塑料制品模具设计英文文献和中文翻译

  7. 塑料成型生产过程中形成...

  8. 河岸冲刷和泥沙淤积的监测国内外研究现状

  9. 十二层带中心支撑钢结构...

  10. 中考体育项目与体育教学合理结合的研究

  11. 当代大学生慈善意识研究+文献综述

  12. 杂拟谷盗体内共生菌沃尔...

  13. java+mysql车辆管理系统的设计+源代码

  14. 酸性水汽提装置总汽提塔设计+CAD图纸

  15. 大众媒体对公共政策制定的影响

  16. 乳业同业并购式全产业链...

  17. 电站锅炉暖风器设计任务书

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回