菜单
  

    AIAA J 1983;21:1714–21.[3] Ishikawa T, ChouTW. Elastic behavior of woven hybridcomposites. J Compos Mater 1982;16:2–19.[4] Ishikawa T, ChouTW. Stiffness and strength behavior of fabriccomposites. J Mater Sci 1982;17:3211–20.[5] Ma C-L, Yang J-M, ChouT-W. Elastic stiffness of three-dimensional braided textile structural composites. In: CompositeMaterials: Testing and Design, Seventh Conference; 1984. p. 404–21.[6] Yang J-M, Ma C-L, ChouT-W. Fiber inclination model of three-dimensional textile structural composites. J Compos Mater1986;20:472–83.[7] Whyte DW. Ph.D.thesis, Drexel University, June 1986.[8] Wang Y-Q, Wang ASD. Microstructure/property relationships inthree-dimensional braided fiber composites. Compos Sci Technol1995;53:213–22.[9] Naik RA, IfjuPG, Masters JE. Effect of fiber architectureparameters on deformation fields and moduli of 2D braidedcomposites. J Compos Mater 1994;28:656–81.[10] Naik RA. Micromechanical combined stress analysis. NASA CR-189694, October. Program available as NASA LAR-15005,COSMIC, National Aeronautics and Space Administration,Hampton, VA; 1992.[11] Naik RA. Failure analysis of woven and braided fabric reinforcedcomposites. J Compos Mater 1995;29:2334–63.[12] Whitcomb JD, Woo K. Application of iterative global/local finiteelement analysis. Part I : linear analysis. Commun NumerMethods Eng 1993;9:745–56.[13] Woo K, Whitcomb JD. Global/local finite element analysis fortextile composites. J Compos Mater 1994;28:1305–21.[14] Whitcomb JD, Woo K, Gundapaneni S. Macro finite element foranalysis of textile composites. J Compos Mater 1994;28:607–18.[15] Woo K, Whitcomb JD. Three-dimensional failure analysis ofplain weave textile composites using global/local finite elementmethod. J Compos Mater 1996;30:984–1003.[16] Tang ZX, Postle R. Mechanics of three-dimensional braidedstructures for composite materials––part III: nonlinear finiteelement deformation analysis. Compos Struct 2002;55:307–17.[17] Huang Z-m. On a general constitutive description for the inelasticand failure behavior of fibrous laminates––part I: laminate theory.Compos Struct 2002;80:1159–76.[18] Huang Z-m. On a general constitutive description for the inelasticand failure behavior of fibrous laminates––part II: laminatetheory and applications. Compos Struct 2002;80:1177–99.[19] Zeng T, WuL-z, Guo L-c. A damage model for 3D braidedcomposites with transverse cracking. Compos Struct 2003;62(2):163–70.[20] Yang JM, Ma CL, ChouTW. Fiber inclination model of three-dimensional textile structure composites. J Compos Mater1986;20:472–84.[21] Hashin Z. Analysis of composite materials––a survey. ASME JAppl Mech 1983;50:481–505.[22] Chen L, Tao XM, Choy CL. Mechanical analysis of 3-D braidedcomposites by the finite multiphase element method. Compos SciTechnol 1999;59:2383–91.0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.20.30.40.50.60.70.80.91.01.1Normalized effective Possion's ratio ( γγeffzx/zx)Normalized crack length (a0/a) Glass/epoxy Graphite/epoxy Ceramic/ceramicFig. 12. Normalized Poisson’s ratio vs. normalized crack length.

    摘要因为三维编织复合材料结构复杂,所以分析起来更加困难。因此笔者发明了一种新型有限元方法来预测三维编织复合材料在三维机械载荷下的有效模量和局部应力。为了验证本方法,将本方法中预测的无损的三维编织复合材料的性能进与以前的方法相比。下面将举例说明。

    2003 Elsevier公司保留所有权利。

    关键词:三维编织复合材料;有限元法;力学性能;开裂

    1. 介绍

    纤维增强复合材料具有优良的力学性能如高强度、论文网高刚度等。特别是层状复合结构已被广泛应用在需要很好的面属性的情况下。然而,层状复合材料在厚度方向上机械性能较差并且易产生层间剥离。为了克服这个困难,在过去的20年间,三维编织复合材料得到了快速发展。这种材料具有较好的外平面刚度、强度和抗冲击性能。因此在在航空航天,汽车和船舶工业有广阔的应用前景。由于三维编织复合材料的应用越来越广泛,许多模型已经被开发来分析其力学性能。因为其复杂的结构,这些分析是非常具有挑战性的。

  1. 上一篇:轧钢厂矫直工艺中轧辊柔韧度的影响英文文献和中文翻译
  2. 下一篇:基于虚拟装配的运动学分析英文文献和中文翻译
  1. 木质填料聚丙烯复合材料...

  2. 耦合侧向扭转频率的不对...

  3. 机械三维标准件库的研究英文文献和中文翻译

  4. 三维有限元数值模拟深基...

  5. 连杆的可靠性三维有限元英文文献和中文翻译

  6. 复合材料高强度混凝土的...

  7. 复合材料高强度混凝土桥...

  8. 酸性水汽提装置总汽提塔设计+CAD图纸

  9. 中考体育项目与体育教学合理结合的研究

  10. 电站锅炉暖风器设计任务书

  11. 乳业同业并购式全产业链...

  12. 杂拟谷盗体内共生菌沃尔...

  13. 大众媒体对公共政策制定的影响

  14. java+mysql车辆管理系统的设计+源代码

  15. 当代大学生慈善意识研究+文献综述

  16. 十二层带中心支撑钢结构...

  17. 河岸冲刷和泥沙淤积的监测国内外研究现状

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回