[8] Hyun, S., Lindgren, L., 2004, Simulating a Chain of Manufacturing Processes Using a Geometry-based Finite Element Code with Adaptive Meshing, Finite Elements in Analysis and Design, 40:511–528.
[9] Pietrzyk, M., Madej, L., Weglarczyk, S., 2008, Tool for Optimal Design of Manufacturing Chain Based on Metal Forming, CIRP Annals – Manufacturing Technology, 57:309–312.
[10] Zaeh, M.F., Papadakis, L., Langhorst, M., 2008, Simulation of the Manufacturing Process Chain of Welded Frame Structures, Production Research, 2:385–393.
[11] Zaeh, M.F., Tekkaya, A.E., Biermann, D., Zabel, A., Langhorst, M., Schober, A.,Kloppenborg, T., Steiner, M., Ungemach, E., 2009, Integrated Simulation of the Process Chain Composite Extrusion–Milling–Welding for Lightweight Frame Structures, Production Research, 3:441–451.
[12] Zaeh, M.F., Tekkaya, A.E., Langhorst, M., Ruhstorfer, M., Schober, A., Pietzka, D.,2009, Experimental and Numerical Investigation of the Process Chain From Composite Extrusion to Friction Stir Welding Regarding the Residual Stresses in Composite Extruded Profiles, Production Research, 3:353–360.
[13] Afazov, S.M., Becker, A.A., Hyde, T.H., 2012, Development of a Finite Element Data Exchange System for Chain Simulation of Manufacturing Processes,Advances in Engineering Software, 47:104–113.
[14] Afazov, S.M., Nikov, S., Becker, A.A., Hyde, T.H., 2011, Manufacturing Chain Simulation of an Aero-engine Disc and Sensitivity Analyses of Micro-scaleResidual Stresses, International Journal of Advanced Manufacturing Technology,52:279–290.
[15] Afazov, S.M., Becker, A.A., Hyde, T.H., 2012, Mathematical Modelling and Implementation of Residual Stress Mapping from Microscale to Macroscale Finite Element Models, Journal of Manufacturing Science and Engineering,134:021001.
[16] Charles, S., Eynard, B., Bartholomew, P., Paleczny, C., 2005, Standardization of the Finite Element Analysis Data-Exchange in Aeronautics Concurrent Engineering,Journal of Computing and Information Science in Engineering, 5:63–66.
[17] Zeng, S., Peak, R., Xiao, A., Sitaraman, S., 2008, ZAP: A Knowledge-based FEA Modeling Method for Highly Coupled Variable Topology Multi-body Problems,Engineering with Computers, 24:359–381.
[18] Dolenc, M., 2004, Developing Extendible Component-oriented Finite Element Software, Advances in Engineering Software, 35:703–714.
[19] Islam, A., Hansen, H.N., Tang, P.T., Sun, J., 2009, Process Chains for the Manufacturing of Molded Interconnect Devices, International Journal of Advanced Manufacturing Technology, 42:831–841.
[20] Klein, M., Eifler, D., 2010, Influences of the Manufacturing Process Chain Design on the Near Surface Condition and the Resulting Fatigue Behaviour of Quenched and Tempered SAE 4140, Journal of Physics Conference Series,240:012052.
[21] Epp, J., Surm, H., Hirsch, T., Hoffmann, F., 2011, Residual Stress Relaxation During Heating of Bearing Rings Produced in Two Different Manufacturing Chains, Journal of Materials Processing Technology, 211:637–643.
[22] Bauer, W., Knitter, R., 2002, Development of a Rapid Prototyping Process Chain for the Production Of Ceramic Microcomponents, Journal of Materials Science,37:3127–3140.
基本加工工序和切削技术
摘要 机床是从早期的埃及人的脚踏动力车和约翰·威尔金森的镗床发展而来的。它们为工件和刀具提供刚性支撑并可以精确控制它们的相对位置和相对速度。基本上讲,金属切削是指一个磨尖的锲形工具从有韧性的工件表面上去除一条很窄的金属。切屑是被废弃的产品,与其它工件相比切屑较短,但对于未切削部分的厚度有一定的增加。工件表面的几何形状取决于刀具的形状以及加工操作过程中刀具的路径。
关键词:机床;金属切削;切屑;工件