菜单
  

    CNC machine tools While the specific intention and application for CNC machines vary from one machine type to another, all forms of CNC have common benefits. Here are but a few of the more important benefits offered by CNC equipment.69591

    The first benefit offered by all forms of CNC machine tools is improved automation. The operator intervention related to producing  workpieces can be reduced or eliminated. Many CNC machines can run unattended during their entire machining cycle, freeing the operator to do other tasks. This gives the CNC user several side benefits including reduced operator fatigue, fewer mistakes caused by human error, and consistent and predictable machining time for each workpiece. Since the machine will be running under program control, the skill level required of the CNC operator (related to basic machining practice) is also reduced as compared to a machinist producing workpieces with conventional machine tools.

    The second major benefit of CNC technology is consistent and accurate workpieces. Today's CNC machines boast almost unbelievable accuracy and repeatability specifications. This means that once a program is verified, two, ten, or one thousand identical workpieces can be easily produced with precision and consistency.

    A third benefit offered by most forms of CNC machine tools is flexibility. Since these machines are run from programs, running a different workpiece is almost as easy as loading a different program. Once a program has been verified and executed for one production run, it can be easily recalled the next time the workpiece is to be run. This leads to yet another benefit, fast change over. Since these machines are very easy to set up and run, and since programs can be easily loaded, they allow very short setup time. This is imperative with today's just-in-time (JIT) product requirements.

    Motion control - the heart of CNC

    The most basic function of any CNC machine is automatic, precise, and consistent motion control. Rather than applying completely mechanical devices to cause motion as is required on most conventional machine tools, CNC machines allow motion control in a revolutionary manner2. All forms of CNC equipment have two or more directions of motion, called axes. These axes can be precisely and automatically positioned along their lengths of travel. The two most common axis types are linear (driven along a straight path) and rotary (driven along a circular path).

    Instead of causing motion by turning cranks and handwheels as is required on conventional machine tools, CNC machines allow motions to be commanded through programmed commands. Generally speaking, the motion type (rapid, linear, and circular), the axes to move, the amount of motion and the motion rate (feedrate) are programmable with almost all CNC machine tools.

    A CNC command executed within the control tells the drive motor to rotate a precise number of times. The rotation of the drive motor in turn rotates the ball screw. And the ball screw drives the linear axis (slide). A feedback device (linear scale) on the slide allows the control to confirm that the commanded number of rotations has taken place3. Refer to fig.1.

    Fig.1

    Though a rather crude analogy, the same basic linear motion can be found on a common table vise. As you rotate the vise crank, you rotate a lead screw that, in turn, drives the movable jaw on the vise. By comparison, a linear axis on a CNC machine tool is extremely precise. The number of revolutions of the axis drive motor precisely controls the amount of linear motion along the axis.

    How axis motion is commanded - understanding coordinate systems

    It would be infeasible for the CNC user to cause axis motion by trying to tell each axis drive motor how many times to rotate in order to command a given linear motion amount4. (This would be like having to figure out how many turns of the handle on a table vise will cause the movable jaw to move exactly one inch!) Instead, all CNC controls allow axis motion to be commanded in a much simpler and more logical way by utilizing some form of coordinate system. The two most popular coordinate systems used with CNC machines are the rectangular coordinate system and the polar coordinate system. By far, the more popular of these two is the rectangular coordinate system.

  1. 上一篇:工业机械手英文文献和中文翻译
  2. 下一篇:立体光照成型的注塑模具工艺英文文献和中文翻译
  1. 汽车乘员舱的声振耦合英文文献和中文翻译

  2. 立体光照成型的注塑模具...

  3. 工业机械手英文文献和中文翻译

  4. 低频振动的铁路车轴的状...

  5. 接头的形状对沥青塞接头...

  6. 数控加工技术英文文献和中文翻译

  7. 电-气动驱动的垂直计算机...

  8. 乳业同业并购式全产业链...

  9. 中考体育项目与体育教学合理结合的研究

  10. 当代大学生慈善意识研究+文献综述

  11. 电站锅炉暖风器设计任务书

  12. 酸性水汽提装置总汽提塔设计+CAD图纸

  13. 河岸冲刷和泥沙淤积的监测国内外研究现状

  14. 杂拟谷盗体内共生菌沃尔...

  15. 大众媒体对公共政策制定的影响

  16. java+mysql车辆管理系统的设计+源代码

  17. 十二层带中心支撑钢结构...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回