摘要固体氧化物燃料电池(SOFC)能够将反应物的化学能直接转化成电能,且对环境没有危害。它在解决能源危机和环境污染问题上表现出巨大的潜力。近年来,将SOFC应用于脱硝的技术更是受到国外广泛的关注。本文以BaMnO3为基础,采用柠檬酸-溶胶凝法合成了A位和B位掺杂改性的系列钙钛矿复合氧化物La0.4Ba0.6MnxMg1-xO3-δ,并通过XRD、TEM、SEM和固定床等手段进行表征并最终选定La0.4Ba0.6Mn0.8Mg0.2O3-δ作为阴极材料研究对象。 La0.4Ba0.6Mn0.8Mg0.2O3-δ催化剂在700℃时NOx的脱除率可达98.96%。通过机械混合和溶胶凝胶法考察了La0.4Ba0.6Mn0.8Mg0.2O3-δ和Ce0.8Sm0.2O1.9(SDC)在不同温度下的化学相容性。采用三电极法测试了La0.4Ba0.6Mn0.8Mg0.2O3-δ在空气或NO中的电导率。通过组装电池Sm0.9Sr0.1Cr0.5Fe0.5O3-δ|SDC|La0.4Ba0.6Mn0.8Mg0.2O3-δ,测试了它在氢气作为阳极气体,空气和NO分别作为阴极气体下的电池性能。63652
毕业论文关键词 固体氧化物燃料电池,钙钛矿型复合氧化物,阴极,NO 直接分解
毕业设计说明书(论文)中文摘要
毕业设计说明书(论文)外文摘要
Title Synthesize of La and Mg-doped BaMnO3 Perovskite as an Cathode for NO Decomposition in SOFC
Abstract
Solid Oxide Fuel Cell (SOFC) can be used to translate chemical energy of reactant into electricity without harm to the environment. It exhibits a great potential in solution of energy crisis and environmental pollution. Recently, a new technology that applies SOFC for denitration (De-NOx) has been focused on widely across the world. In this dissertation, a series of perovskite-type oxides La0.4Ba0.6MnxMg1-xO3-δ via substituting the A or B site of BaMnO3 were successfully synthesized through citric acid complexing sol-gel method, and characterized by the means of XRD,TEM,SEM and tested by fixed-bed, and finally La0.4Ba0.6MnxMg1-xO3-δ was selected as the cathode material research object. The NOx conversion over La0.4Ba0.6MnxMg1-xO3-δ can attain 98.96% at 700℃. The chemical compatibility of La0.4Ba0.6MnxMg1-xO3-δ and Ce0.8Sm0.2O1.9(SDC) under different temperatures was discussed through mechanical mixing and sol-gel method. The conductivity of La0.4Ba0.6MnxMg1-xO3-δ in air or NO atmosphere was tested by the three-electrode method. The cell performance was tested by assembling the cell Sm0.9Sr0.1Cr0.5Fe0.5O3-δ|SDC|La0.4Ba0.6Mn0.8Mg0.2O3-δ which took H2 as anode gas , air or NO as cathode gas.
Keywords Solid oxide fuel cell , Perovskite-type oxides, Cathode, NO decomposition
1 引言 1
1.1氮氧化物的来源及危害 1
1.1.1氮氧化物的来源 1
1.1.2氮氧化物的危害 1
1.2氮氧化物的消除方法 2
1.2.1非选择性催化还原法 2
1.2.2氨选择性催化还原(SCR)法 2
1.2.3炭还原法 2
1.2.4催化分解法 3
1.3固体氧化物燃料电池(SOFC) 3
1.3.1固体氧化物燃料电池的优点 3
1.3.2固体氧化物燃料电池的工作原理 3
1.3.3电化学催化电池的工作原理 4
1.4固体氧化物燃料电池材料 5
1.4.1阳极材料 5
1.4.2电解质材料