摘要目标跟踪算法是纯方位目标运动分析研究的核心内容之一,纯方位系统本身固有的非线性和弱可观测性特点,使得该类问题研究具有较大的难度。本文建立了纯方位目标跟踪数学模型,详细阐述了扩展卡尔曼滤波,无迹卡尔曼滤波,粒子滤波的算法思想,并提出了两种跟踪算法评价标准,包括:最优理论性能下界和均方根误差。根据这两种评价准则,对比分析三种算法性能。
对三种算法分别进行蒙特卡罗仿真,分析仿真结果得出,观测器的机动策略、状态初始估计、状态初始协方差及其观测噪声等,会影响到扩展卡尔曼滤波的滤波精度,合理的状态初始估计对无迹卡尔曼滤波的滤波性能也有一定的影响。对比分析三种算法性能,无迹卡尔曼滤波和粒子滤波的跟踪性能要优于扩展卡尔曼滤波,但无迹卡尔曼滤波比扩展卡尔曼滤波的运算时间长。21767
关键词 纯方位目标跟踪 扩展卡尔曼滤波器 无迹卡尔曼滤波器 粒子滤波器
毕业论文设计说明书(论文)外文摘要
Title Research on Algorithm with Application to Underwater
Bearings-Only System Target Tracking
Abstract
Target tracking algorithm is the core content of bearings-only target motion analysis research. Bearings-only system possessing nonlinearity and weak observability results in the complexity and difficulty of dealing with the above problem.First,the mathematical model of bearings-only system is established.The ideas of EKF, UKF, PF algorithm are then reviewed,and two evaluation criteria for above algorithms, such as Cramer-Rao low bound and root mean square errors, are proposed.
The performence of these three algorithms are evaluated using Monte Carlo simulation approach. The simulation results show that the observer maneuver strategy,the initial state estimation,the initial state covariance, and the observation noise, etc., will affect the filter’s performance. By comparing the performance of the above three algorithms, the tracking performance of UKF and PF is superior to EKF, but the computing time of UKF is longer than EKF.
Keywords Bearings-only tracking(BOT), extended kalman filter(EKF), unscented kalman filter(UKF), particle filter(PF)
目 次
1 绪论 1
1.1 课题研究背景及意义 1
1.2 国内外研究现状 2
1.3 课题研究内容及思路 4
1.4 论文结构安排 6
2 纯方位系统目标运动分析基础 8
2.1 概述 8
2.2 两个基本假设 8
2.3 BOTMA的数学模型 8
2.4 BOTMA的研究内容 10
2.5 BOTMA目标跟踪算法研究基础 11
2.6 小结 11
3 非线性滤波算法 12
3.1 概述 12
3.2 EKF 12
3.3 UKF 13
3.4 PF 15
3.5 评价滤波算法准则 17
3.6 小结 18
4 基于EKF/UKF/PF的水下纯方位系统目标跟踪算法 19
4.1 概述 19
4.2 算法思想 19
4.3 算法实现流程及步骤 21
4.4 数值仿真分析 26
4.5 小结 44
5 三种水下纯方位系统目标跟踪算法对比分析 45 水下纯方位系统目标跟踪算法研究:http://www.751com.cn/zidonghua/lunwen_14116.html