摘要:高速铁路行车因其速度快、密度大的特点,对桥梁的抗弯刚度、抗扭刚度、稳定性和耐久性要求较高,而下承式铁路钢桁梁桥能够较好的满足以上要求。下承式钢桁梁桥在竖向荷载的作用下,混凝土桥面板和主桁架形成稳定的空间结构,提高横向抗弯刚度,使行车变得舒适,也增加钢梁焊缝的疲劳寿命。因此下承式钢桁梁桥逐渐被国内外广泛运用。本设计(论文)主要研究单线铁路80米下承式栓焊简支钢桁梁桥的主桁杆件内力计算,主桁杆件截面设计,弦杆拼接计算和下弦端节点设计以及挠度验算和上拱度设计。21930
毕业论文关键词:简支钢桁梁桥;下承式;铁路桥
Single-track railway 80-meters bolt welded through simply supported steel truss girder bridge design
Abstract: High-speed railway’s fast speed and heavy density means to bridge’s bending stiffness, torsional stiffness, stability and durability requirements are higher, and the railway through truss girder bridge can satisfy the above requirements. Through truss girder bridge under vertical load effects, and the main truss bridge deck concrete to form a stable spatial structure, improve lateral bending stiffness, so that driving becomes comfortable, but also increase the fatigue life of the steel beam welds. So the through truss girder bridge gradually been widely used at home and abroad. This design (thesis) mainly research single-track railway 80-meters bolt welded through simply supported steel truss girder bridge’s main truss member forces calculation, the main truss section design, stitching chords and chord end computing node design and deflection calculation and camber design.
KeyWords: simply supported truss bridge;through bridge;railway bridge
目录
1 绪论 1
1.1 课题的目的和意义 1
1.2 国内外研究现状与水平 1
1.3 发展趋势 3
1.4 先行研究 4
1.5 本设计(论文)的主要研究方法 5
2 设计资料 6
2.1 基本资料 6
2.2 设计内容 6
2.3 设计要求 6
3 主桁杆件内力计算 8
3.1 主力作用下主桁杆件内力计算 8
3.1.1 恒载计算 8
3.1.2 影响线面积计算 8
3.1.3 活载内力计算 12
3.1.4 列车横向摇摆力作用下的主桁杆件内力 15
3.1.5 主力作用下的主桁杆件内力计算 16
3.2 横向附加力作用下的主桁杆件内力计算 17
3.2.1 横向力作用下的平纵联弦杆的内力计算 17
3.2.2 桥门架效应 18
3.3 纵向制动力作用下的主桁杆件附加内力计算 19
3.3.1 下弦杆E0E2制动力计算 19
3.3.2 下弦杆E2E4制动力计算 20
3.3.3 跨中下弦杆E4E4’制动力计算 20
3.4 疲劳内力计算 21
3.4.1 疲劳轴力 21
3.4.2 吊杆疲劳弯矩 22
3.5 主桁杆件内力组合 23
4 主桁杆件截面计算 28 单线铁路80米下承式栓焊简支钢桁梁桥设计+CAD图纸:http://www.751com.cn/gongcheng/lunwen_14355.html