摘要采用了高温固相反应法合成了Sr2SnO4:Sm3+红色长余辉发光材料。通过X射线衍射仪、荧光光谱仪分析了Sr2SnO4:Sm3+的物相结构及其发光强度,讨论了烧结温度对样品物相结构的影响和Sm3+不同的掺杂比例对样品发光强度的影响。研究发现,最佳的烧结温度是1000℃,随Sm3+浓度的增大,发射光谱强度先增大后减小,即出现了浓度猝灭效应,Sm3+的最佳摩尔分数为1%。对Sr2SnO4:Sm3+的余辉特性进行了分析,通过余辉衰减曲线和热释光谱的拟合获得样品的余辉时间和陷阱深度。进一步探讨了共掺杂碱金属元素(K+和Na+)对样品余辉性能的影响,发现其余辉性能都得到了增强,且K+的掺杂效果较好,材料余辉性能大大提高。36278
毕业论文关键词:Sr2SnO4;余辉;激发光谱;发射光谱;衰减;热释光谱
Abstract Red long lasting phosphors of Sr2SnO4:Sm3+ have been successfully synthesized by solid-state reaction. The phase structure and the luminescent intensity of Sr2SnO4:Sm3+ were analyzed by x ray diffraction and fluorescence spectrometer. The effect of the sintering temperature on the phase structure of the sample and the effect of Sm3+ doping proportion on the luminescence intensity of the sample were discussed. The research found that the best sintering temperature was 1000 ℃, with increasing Sm3+ concentration, emission intensity increases first and then decreases. Which means there exist concentration quenching. The optimized mole fraction of Sm3+ is 1%. The afterglow properties of Sr2SnO4:Sm3+ were analyzed, the afterglow time and trap depth of the sample were obtained by fitting of the afterglow decay curve and the thermoluminescence spectrum. The effect of co-doping alkali metal elements(K+ and Na+)on the afterglow properties of the samples is studied, the results have been found that the afterglow properties of the phosphors are enhanced and the effect of K+ is better, and the afterglow of the material is greatly improved.
Key Words: Sr2SnO4; Afterglow; excitation spectroscopy; emission spectroscopy; decay; TL spectra
目录
1绪论 7
1.1 长余辉发光材料研究的意义和进展 7
1.2锡酸锶的简介 7
1.3合成方法 8
1.3.1 高温固相法 8
1.3.2 溶胶-凝胶法 9
1.3.3 水热合成法 10
1.4 长余辉发光材料的发光和余辉机理 10
1.4.1 影响余辉时间长短的因素 11
1.4.2 主要影响因素——陷阱深度的测量方法 11
2实验部分 14
2.1 实验原料 14
2.2实验仪器设备 14
2.3 制备方法的选择 15
2.4 样品制备 16
2.5 工艺优化 16
2.5.1 烧结温度的影响 16
2.5.2 Sm3+掺杂比例的影响 16
2.6 测试与表征 17
3结果与讨论 17
3.1 烧结温度的影响 17
3.2 SM3+掺杂比例的影响 18
3.2.1对物相的影响 18
3.2.2 对发光性能的影响 19
3.3 余辉性质 21
4结论 25
致谢 26
参考文献 27
1绪论
长余辉发光材料简称长余辉材料,又称夜光材料。它是一类在广源激发的条件下能够发出可见光,并会储存得到的部分光能,当停止对其激发之后,又会以光的形式将存储的能量缓慢释放出来的一种光致发光材料。因此也称“绿色光源材料”。因为它在得到光照之后会将光存储起来,可以在晚上或者暗处再次发出光来,它被广泛应用与夜间应急指示、光电子器件或元件、仪表显示,低照明及国防军事等领域,更有望应用于信息处理,新能源,生命科学和宇宙的前沿技术领域,对科学技术未来的发展有重要影响。
- 上一篇:适合蓝光紫近外LED激发的可调光的荧光粉Eu3+:LiGd(MoO4)2研究
- 下一篇:LiFePO4的充放电反应温度对材料性能的影响
-
-
-
-
-
-
-
中考体育项目与体育教学合理结合的研究
java+mysql车辆管理系统的设计+源代码
河岸冲刷和泥沙淤积的监测国内外研究现状
电站锅炉暖风器设计任务书
大众媒体对公共政策制定的影响
酸性水汽提装置总汽提塔设计+CAD图纸
乳业同业并购式全产业链...
杂拟谷盗体内共生菌沃尔...
十二层带中心支撑钢结构...
当代大学生慈善意识研究+文献综述