菜单
  
    Energy efficiency in the British housing stock:Energy demand and the home energy EfficiencyDatabase
    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007.47329
    This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies.
    1. Introduction
    The UK government has identified the residential building stock as being one of the most cost-effective and technology-ready sectors to substantially reduce the greenhouse gas (GHG) emissions over the next decade (DECC, 2012a). Proposals, for example, include cutting GHG emissions in existing homes by 29% by 2020 through a challenging ‘whole house’ retrofit programme, enabled under the ‘Green Deal’ (DECC, 2010a); plans also include all new homes to be ‘zero carbon’ by 2016 (CLG, 2007). These targets have set out a pathway that will see many billions of pounds invested in technologies to improve energy efficiency of demand (DECC, 2012a, European Commission, 2011 and UNEP, 2011). Yet achieving these reductions in practice will depend on the ability to measure and track the energy demand of dwellings that have been the subject energy efficiency retrofits. The overall aim of this paper is to examine the effectiveness of one possible approach to measurement and tracking of energy demand through an analysis of the impact that historic energy efficiency interventions had on energy demand in UK dwellings between 2004 and 2007.
    Developing energy efficiency intervention programmes for the UK housing stock that are capable of achieving significant and sustained reduction in energy demand requires nothing less than a step change in the available information on the state of the existing stock. The fact is, however, that such data has in the past been difficult to come by, for reasons of lack of interest, limited investment in high quality data, poor coordination and limited connexion between existing datasets and the ability of all stakeholders to learn and innovate (Dietz, 2010, Lowe and Oreszczyn, 2008 and Oreszczyn and Lowe, 2010). The government, in acknowledging this need for data and its importance in meeting their GHG reduction commitments has developed a data-framework that draws together information on the UK's dwelling stock and its energy performance (DECC, 2011).
    Since 1995 to 2012, the Homes Energy Efficiency Database (HEED) has collected data on energy efficiency measures installed in approximately 13 million dwellings in the UK, or half the housing stock, from a number of different sources including: energy suppliers, government funded schemes directed at vulnerable households (e.g. fuel poor, elderly, low income), energy efficiency surveys and retrofit installers (Energy Saving Trust, 2010). HEED offers a unique data source that provides information on both the features of the dwelling (e.g. age, size, type, location), its energy performance (e.g. loft insulation levels, wall construction, etc…), along with details on the installed efficiency measures (e.g. loft insulation, cavity filling, boiler replacement, etc…). In addition to this source of dwelling level energy details, the government has collected annual gas and electricity meter data from energy suppliers on energy demand for statistical reporting since 2004 (DECC, 2009b). In this study, these two sources of data were linked together by the government using the physical property address and made available for analysis.
  1. 上一篇:焊接或螺栓连接角节点的结构优化设计英文文献和中文翻译
  2. 下一篇:检测和跟踪的机器人视觉伺服系统英文文献和中文翻译
  1. 酒店业的消费需求英文文献和中文翻译

  2. 办公楼围护结构的能源和...

  3. 能源和建筑英文文献和中文翻译

  4. 能源与建筑英文参考文献和翻译

  5. java+mysql车辆管理系统的设计+源代码

  6. 酸性水汽提装置总汽提塔设计+CAD图纸

  7. 十二层带中心支撑钢结构...

  8. 乳业同业并购式全产业链...

  9. 河岸冲刷和泥沙淤积的监测国内外研究现状

  10. 中考体育项目与体育教学合理结合的研究

  11. 电站锅炉暖风器设计任务书

  12. 大众媒体对公共政策制定的影响

  13. 当代大学生慈善意识研究+文献综述

  14. 杂拟谷盗体内共生菌沃尔...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回