摘要本实验研究了Cu2+对厌氧氨氧化菌性能和污泥特性的短期抑制影响。通过批次实验研究了Cu2+对厌氧氨氧化颗粒污泥的短期抑制,动力学特性和蓄积性抑制影响,和通过缓冲液洗涤恢复厌氧氨氧化菌的性能。结果表明,Cu2+的半抑制浓度(IC50)为32.5mg/L,且Cu2+对厌氧氨氧化菌的抑制浓度是非竞争性的。Cu2+对厌氧氨氧化的蓄积性毒性十分严重。受到5mg/L的Cu2+抑制的厌氧氨氧化菌,经缓冲液洗涤10小时其活性可以恢复,然而受到较高浓度的Cu2+(超过15mg/L)抑制时,厌氧氨氧化活性只能恢复到抑制前的73.0%。此外,在连续流实验过程中,Cu2+浓度为8mg/L时,厌氧氨氧化菌受到抑制,并且氮去除率(NRR)从12.4 kg m-3 d-1下降到几乎为0。与此相反,厌氧氨氧化菌经过驯化后,可耐受低浓度的Cu2+(5mg/L)。性能的恢复与重新启动相似,都是通过波尔兹曼模型进行。46781
This study investigated the short-term inhibitory effects of Cu(II) on anaerobic ammonium oxidation (anammox) performance and sludge characteristics. The short-term inhibition, kinetic characteristics,and cumulative inhibition of Cu(II) on anammox sludge and recovery from this inhibited activity by washing with buffered solution were investigated by batch testing. The results showed that the half inhibition concentration (IC50) was 32.5 mg/L and that inhibition by Cu(II) on anammox was non-competitive. The cumulative toxicity of Cu(II) was severe. After the biomass was washed with buffered solution for 10 h, the suppression of anammox activity by 5 mg/LCu(II) could be remitted, whereas no more than 73.0% of the pre-inhibited level of activity was regained at higher Cu(II) concentrations (over 15 mg/L). Additionally, 8 mg/L Cu(II) inhibited anammox performance considerably during continuous operation, with the nitrogen removal rate (NRR) decreasing from 12.4 to nearly 0 kg m-3 d-1. In contrast, the anammox consortia could tolerate Cu(II) stress after domestication with a low level of Cu(II) (5 mg/L). The performance of recovery similar to the re-startup features were simulated by a modified Boltzmann model.
毕业论文关键词: 厌氧氨氧化; 铜; 抑制; 恢复; 污泥特性
Keywords:Anammox Copper;Inhibition;Recovery;Sludge characteristics
目 录
1、 引言 4
2. 材料和方法 4
2.1. 模拟废水和接种污泥 4
2.2.连续实验中的实验装置和操作策略 5
2.3. 批次实验 5
2.3.1.固定初始底物浓度下,铜的批次毒性试验 5
2.3.2.不同的初始底物浓度下,铜的批次毒性试验 5
2.3.3.批次蓄积性毒性试验 6
2.3.4. 短期活性恢复策略 6
2.4. 分析方法 6
2.5.数学模型 7
2.5.1.非竞争性抑制模型 7
2.5.2. 玻尔兹曼的增长模型 7
2.5.3. 莫诺模型 7
3、 结果和讨论 7
3.1. 铜对厌氧氨氧化的短期影响和模型评估 7
3.2. 铜对厌氧氨氧化的动力学特征的短期影响 9
3.3. 铜对厌氧氨氧化菌的蓄积性毒性 10
3.4. 短期活性恢复策略 11
3.5. 长期影响和恢复策略