菜单
  
    摘要焦炭质量在一定程度上影响着炼铁指标, 而配煤结构的合理性对焦炭质量的影响程度约30%. 实际配煤过程中, 配合槽的水分设定值滞后将近24小时, 严重影响配煤切出准确率. 因此, 有必要研究配合槽内的水分分布情况和预测配合槽下切出煤料的含水率, 以指导配煤时间, 提高配煤精度.
    本论文利用对流方程和对流扩散方程, 建立一文情况下的水分渗透模型, 并采用有限元方法进行求解. 另外, 建立了配合槽的加煤和切煤模型, 以模拟实际的加煤和切煤过程.
    对于渗透模型, 本文主要将其有限元方法(FEM)与有限差分方法(FDM)进行比较. 首先, 选取相同的均匀节点( ,  ), 两种方法的结果基本相同. 为了更好地模拟边界处梯度较大的情况, 采用相同数量的Chebyshev-Gauss-Labatto (CGL)点, 结果出现差异性; 为了验证FEM-CGL结果的正确性, 在FDM中, 选取步长为CGL点的最小步长( ,  ), 结果与FEM-CGL效果相同. 为了得到更合理的节点分布, 在模拟过程中, 结合自适应有限元的思想, 根据当前的含水率数据, 对节点进行重新分布.
    最后, 利用所建立的模型, 模拟了实际过程.5423
    关键词:水分分布模型 渗透 对流扩散方程 有限差分解法 重构
    Finite element solution of water distribution model of coal blending trough
    Abstract:
    The hard coke quality affects the pudding index number to some extent, but the rationality of coal blending structure have an influence on hard coke quality about 30%.In the process of actual coal blending, the blending trough water set point lag behind nearly 24 hours, which affect the coal blending cut-out accuracy rate. Therefore, in order to guide the blending time and improve the accuracy of coal blending, it is necessary to study the water distribution and forecast the moisture content of coal in blending trough.
    Using the convection equation and the convection-diffusion equation, this paper build water osmosis model in one-dimensional condition and adopt finite element method to solve the problem. In addition, in order to simulate the actual add or cut coal process. this paper also build the model of add or cut coal in blending trough.
    With regard to osmosis model, the finite element method (FEM) and the finite difference method (FDM) were compared in this paper. First, select the same uniform dot( ,  ),the results of the two methods are basically the same. In order to simulate the condition of boundary which the gradient is large, we use the same number dot of Chebyshev-Gauss-Labatto (CGL). The result appears otherness. In order to verify the correctness of the result of FEM-CGL, we select the step size as the minimum step size of CGL point ( ,  )in FDM. The result is the same as the FEM-CGL effect. In order to get more reasonable panel point distribution, based on the current data of water content, we combine adaptive finite element method in the simulation process. As a consequence panel point distribution is changed.
    Finally, we simulate the actual process by using the model.
    Keywords: water distribution model, osmosis, convection-diffusion equation, FEM, reconstruct

    目录
    摘要    i
    Abstract:    i
    1    绪论    1
    1.1背景    1
    1.2问题描述    1
    1.3对流扩散方程的介绍    2
    2    渗透模型的建立及求解    3
    2.1渗透模型的建立及求解    3
    2.1.1假设    3
    2.1.2问题分析和模型建立    3
    2.1.3 数值求解    5
    2.1.4含水率的修正    9
    2.2配煤槽中煤的增减模型    9
    2.2.1切煤过程    10
    2.2.2加煤过程    10
    3    模拟仿真    12
  1. 上一篇:地铁闸机检测系统中特定数目传感器布置方法
  2. 下一篇:积分方程快速傅里叶变换方法在电磁散射问题中的应用
  1. 配煤槽水分分布模型的有限差分解法

  2. 电站锅炉暖风器设计任务书

  3. 河岸冲刷和泥沙淤积的监测国内外研究现状

  4. 大众媒体对公共政策制定的影响

  5. 乳业同业并购式全产业链...

  6. 杂拟谷盗体内共生菌沃尔...

  7. 中考体育项目与体育教学合理结合的研究

  8. 十二层带中心支撑钢结构...

  9. 当代大学生慈善意识研究+文献综述

  10. 酸性水汽提装置总汽提塔设计+CAD图纸

  11. java+mysql车辆管理系统的设计+源代码

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回