菜单
  
    Fredholm 算子源于积分算子和微分算子, 又联系到指标理论, 因而它是一类非常重要的算子,本文考察了有界 Fredholm算子组成的空间、它的拟基本解,并用它的拟基本解得出了 Fredholm算子紧扰动的性质,接下来首先证明了一个特殊形式的积分算子为指标为 0 的Fredholm 算子,然后用对偶对的概念重新叙述并证明了 Fredholm 二择一定理(这种表述方法比原来的形式更容易推广),然后利用它考察具体的积分算子和积分算子的边值问题。之后,进入到无界Fredholm算子的研究,考察由 Sturm-Liouville 算式生成的最大算子、最小算子、由最小算子通过分离性边值条件延拓得到的自伴延拓算子的Fredholm 谱集,Fredholm 预解集并得到自伴算子的谱分解。   59579
    毕业论文关键词   Fredholm 算子  积分算子  紧扰动   Fredholm 谱集   Fredholm 预解集  Sturm-Liouville 算子  谱分解 
    Title    Fredholm Operator and its application 
    Abstract Fredholm Operator get its name from Fredholm and other mathematicians’s  study  of   Integral Operators and Differential Operators,and it can links to the theory of index ,so it is an important subject.In this Article ,I study the space consist of Fredholm Oprator,The parametrix, Fredholm Alternatives via Dual Pairs, Applications to Integral Equations and Boundary-Value Problems.After that ,I study the maximal operator,minimal operator ,the self-adjoint operator  corresponding to Sturm-Liouville differential expression,their Fredholm spectrum ,Fredholm  resolvent.   Keywords    Fredholm Operator    Integral  Operator  Compact   Perturbation    Fredholm spectrum   Fredholm  resolvent   Sturm-Liouville  Operator       

    Contents

    1 Fredholméééfffƒƒƒ555üüü 2

    1.1 Fredholm½¬9ƒ5ü 2

    1.2 Fredholméf[ƒ) 3

    1.3 Fredholméf;6ƒ 4

    2 AAA^^^»»»©©©êêêßßß999>>>äääØØØKKK˛˛˛ 5

    2.1 »©éf 5

    2.2 3»©êß⁄>äØK•A^ 7

    3 AAA^^^Sturm-LiouvilleéééfffÔÔÔƒƒƒ˛˛˛ 12

    3.1 Sturm-LiouvilleéfÃx!é) 12

    3.2 FredholmÃ8!Fredholm˝)8 20

    4 (((ÿÿÿ 26

    1 Fredholméf ƒ 5ü1.1 Fredholm ½¬9ƒ 5ü½¬µX!YèDâÇ5òmßTèX Y k.Ç5éfßÖß çIkÅßK°TèFredholméf"5µPT çIè (T),·Çk (T) = 

    (T)    

    (T),Ÿ•

    (T)èTéfÿòm ëÍß 

    (T)èTéfºfòm ëÍ"e° ½nL²µ3k.éfUéfâÍ|§ òm•ßFredholméf|§ f8¥m "P“µïÏL£XßY§ß·Ç½¬F£X,Y§èlX Y §k Fredholméf|§ 8‹ßŸ•X,Y˛èBanachòm"½nµ S 2 F(X; Y )ßK3" > 0¶  T 2 L(X; Y )ÖjjT   Sjj < "ûßkT 2 F(X; Y );  (T) =  (S)y²µ-N := N(S);R := R(S),ƒk Eéf^ T(u; v) = Tu + v; 8u 2 M; v 2 Q:Ÿ•MßQ˛èX fòmÖ˜vX = N +M;X = R + QKéf^ T : M   Q ! XÇ5ÖÎY.e°·Çƒky²^ SèV ߃kd^ S  EꙥŸè˜ ßb ^ S(u; v) =0.KkSu + v = 0; u 2 M; v 2 Q;=Su 2 R; v 2 Q,œdv = 0; Su = 0;ddu = 0; v = 0ß^ Sè¸ "源]自{751·~论\文}网·www.751com.cn/ ·Ç ejj ^ T   ^ Sjjø© ßKéf^ TèèV ßœdßejjT   Sjjø© ßKéf^ TèV ßKdß ˜ ·Çå±  òm ©)XeµX = T(M) + Qç?ò⁄ß·ÇkµN(T)   NØ¢˛ßTu = 0; u 2 M —^ T(u; 0) = 0;œdu = 0; N(T)   Nd˛™å µdimN(T)   dimN < 1 qœècodimT(M) = dimQ = codimR·Ç¿JN òáfòmP¶ ke° Ü⁄/™µN = N(T) + PKßX = (N(T) + P) +M = N(T) + (P +M),œdT3P +M˛è¸ ß R(T) = T(P) + T(M); dimT(P) = dimP=X = T(P) + T(M) + U;U + R(T) = Xd±˛ ™f·Çå µcodimR = codimT(M) = codimR(T) + dimP;dimN = dimN(T) + dimPd˛™w, codimR(T); dimN(T)ëͲkÅß=TèFredholméf"øÖ (T) = dimN(T) codR(T) = (dimN dimP) (codimR dimP) = dimN codimR =  (S)œd½n y"1.2 Fredholméf [ƒ )½nµ-AµX ! Yèk.Ç5éfߟ•X!YèBanachòmßKe° ¸áÿ„¥¬d µ1:éfAèFredholméf2:3k.éfPl; Pr : Y ! X⁄;éfCl : X ! X,Cr : Y ! Y¶ µPlA = I + ClAPr = I + Cr5µŸ•éfpl; pr©O âA Ü[ƒ )⁄m[ƒ )"y²µ1 ) 2 :©O X!Y fòmV⁄WßøÖkµX = N(A) + V; Y = R(A) +W œèAèFredholméfߧ±˛° òm©)¥å±â  "-P : X ! N(A) Q : Y ! WÖP!QÎYÖè˜ "½¬k.éfXeµB : R(A) +W ! Xß /™XeµB(u + w) = A 10 u; 8u 2 R(A);w 2 WŸ•A0 : V ! R(A)L´A : X ! Y3‘˛ Åõ" éfA0èÇ5” "qœèBA = I   P; AB = I   Q:œèP(X)⁄Q(Y )èkÅëòmßéfP!Q;ß-Pr = Pl := B=å"2 ) 1 :éfI +Cl; I +Cr—¥çIè0 Fredholméf"qPlA = I +ClµN(A)   N(I + Cl),œdµdimN(A)   dimN(I + Cl) < 1,

  1. 上一篇:对称群及其应用
  2. 下一篇:博弈论模型及其在社会经济的应用
  1. 随机贴现因子的基本特征及其应用研究

  2. 重庆市旅游业发展状况及...

  3. 旋转曲面的面积和旋转体体积的求法及其应用

  4. 函数施瓦茨连续性及其性质

  5. 容斥原理及其应用表现形式

  6. 南京市近六十年暴雨降水...

  7. 凸函数的性质及其在不等式证明中的应用

  8. 电站锅炉暖风器设计任务书

  9. java+mysql车辆管理系统的设计+源代码

  10. 十二层带中心支撑钢结构...

  11. 河岸冲刷和泥沙淤积的监测国内外研究现状

  12. 当代大学生慈善意识研究+文献综述

  13. 中考体育项目与体育教学合理结合的研究

  14. 乳业同业并购式全产业链...

  15. 酸性水汽提装置总汽提塔设计+CAD图纸

  16. 大众媒体对公共政策制定的影响

  17. 杂拟谷盗体内共生菌沃尔...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回