2.1 量子纠缠的起源
量子纠缠是量子力学最重要的特征之一,从其诞生之初就已经提出了“纠缠”这一名词,虽然爱因斯坦首先发现了量子纠缠这一奇特现象,但“纠缠态”的概念最早却是由薛定谔在他的一篇关于“猫态”的论文中提出来的[4]。1935年,薛定谔提出一个假想实验,他用下列波函数来描述猫和原子这个复合系统:
(1)
其中, 表示原子处于激发态而猫是活着的几率, 表示原子处于基态而猫是死的几率,相当于猫是处于半死不活的状态。在这个假想实验中,我们只可能会看到一种结果,猫要么死了,要么活着。这样猫的生死依赖于我们的“观察”,而不是依赖于打开笼子前的“客观存在”,因此量子力学的统计解释是与日常生活经验不服的,人们难以直观接受的。同年爱EPR认为,作为一个完备的理论,每一个实在的成分都必须能够找出它的对应成分,判定一个物理量的实在的充要条件是,在不扰动系统的情况下,能对其做出确定性的预言。EPR文章中提出如下一个量子态:
(2)
其中 和 分别代表两个粒子的坐标,P表示动量。这样的一个量子态不能写成两个子系统态的直积形式:
(3)
薛定谔将这样的量子态称为纠缠态。同样对于一个由N个子系统构成的复合系统,如果系统的密度矩阵不能写成各个子系统的密度矩阵的直积的线性和的形式,则这个复合系统就是纠缠的,即:
(4)
这里只 ,并且 。 为密度矩阵,又称统计算符,描述统计系统中力学体系的量子运动状态的分布的矩阵[5]。
2.2 EPR佯谬和Bell不等式源.自|751,:论`文'网www.751com.cn
微观粒子存在许许多多非经典的特性,对于系统的状态,我们只能用一个态矢量或波函数来描述,我们无法确定一个微观粒子在空间中确定的位置,只能知道通过测量后在各个区域中的概率。对这样一种非直观的观点,是不易被人们所接受的,包括许多物理学家都无法接受。其中就包括相对论的创建者爱因斯坦,在1935年,他与波多尔斯基(B. Podolsky)和罗森(N. Rosen)—起,在Physics Review上发表了一篇标题为“Can Quantum Mechanical Description Of Physical Reality Be Considered Completed?”的文章[5]。他们完成了一个理想的实验,利用逻辑论证的方法,证明了量子力学的描述是不完备的,这就是EPR佯谬。1964年,贝尔(Bell)给了这个佯谬一个定量的描述,并得到了 EPR佯谬正确性的证据——贝尔不等式。
爱因斯坦认为该佯谬表明,要么量子力学对微观系统的描述是不完备的,要么两个子系统虽然处于类空间隔,但是彼此之间不是完全独立的,而是相互关联的。爱因斯坦从经典定域论出发,对第二条绝对否定从而判定量子力学利用波函数和态矢量来描述微观世界是不完备的。后来波尔(Bohr)对爱因斯坦等人的质疑给出了明确的回答,他认为爱因斯坦等人不理解两个观点,一是在量子力学当中,两粒子形成的纠缠态是非定域的,纠缠的特性使两粒子形成一个不可分割的同一系统;二是当对系统进行不同的测量时候,会造成不同坍缩使结果不同。迄今为止,实验一直支持量子力学的观点,不管是波函数还是态矢量还是密度矩阵,它们对量子力学的描述都是完备的,并且量子系统的纠缠是带有非定域性质的,在测量过程中产生的坍缩也是非定域性质的。