起重船空间运动数学模型建立的基本流程为:通过对船舶的任意运动应用牛顿刚体力学的动量定理以及动量矩定理,进而得到构成起重船运动数学模型的基本框架的三个平移运动方程以及三个旋转运动方程,从而实现对六个自由度系统动态分析以及处理。
在起重船动力定位的过程中,当处于航向保持、航迹保持中等强度的操纵状态时,起重船在升沉、横摇、纵摇三个自由度上的运动产生的影响可以忽略不计其影响主要表现在纵荡、横荡和艏摇三个自由度上。
结合以上论述,起重船的平面运动方程可简化为如下所示:起重船平面运动方程可简化为[16]:
(2-1)
上式是船舶平面操作运动的基本表达式,描述了起重船在水平面上操作运动的一般方程,这里起重船所受到的流体动力和动力矩分别用 、 、 表示,外界干扰力和力矩则分别用 、 、 表示,此处不作详细讨论。
若将起重船的船体、螺旋桨以及舵作为一个整体看待,则式(2-1)等式的左边是由移动速度( )、艏摇角速度( )、移动加速度和艏摇角加速度( )、舵角( )以及螺旋桨转速( )构成的非线性函数,即
(2-2)
取等速直航运动这一平衡状态作为基点,借助式(1.2)对非线性的起重船平面运动进行线性化处理,则有: , , , , 为起重船的额定航速,在起重船动力定位的过程中,起重船的实际运动偏离起重船的平衡位置甚微,因此 、 、 、 、 和 都是小量。
将式(1-2)的右端在平衡点的邻域内展开成只保留一阶量的泰勒级数,再经过进一步的化简,得到[18]
(2-3)
式(1-3)中,因流体产生的附加质量和附加惯性矩分别为 、 、 、 、 、 、 、 ,线性流体动力导数则分别为 、 、 、 、 、 、 、 、 。
根据线性流体动力导数的性质,由于起重船船形相对于纵舯剖面成左右对称,因此起重船纵轴方向的流体动力在横档速度向左还是向右时数值相同,即其为偶函数,故有 =0。同理可得 =0, =0, =0, =0, =0, =0, =0。源]自[751^`论\文"网·www.751com.cn/
起重船线性化模型为:(线性化依据)
其中, 、 、 为起重船自身产生的力和力矩项,即舵、桨、艏喷时的反向作用力。从应用的角度上来分析,海洋中的起重船受到的力主要由流体动力、主动力(控制力)和环境干扰力三类力组成。控制力通常由螺旋桨的推力、舵产生的转船力和艏喷作业时产生的反向作用力组成,其能使起重船进行预期的操纵运动。环境干扰力主要由海风、波浪、海流的影响以及疏浚作业时作业耙头与海底产生的巨大的疏浚力构成,其会让起重船发生低频和高频振荡运动。在控制力和外界干扰力的相互作用下,起重船会在海洋流体中运动,流体动力即产生在此过程中,它是流体与之相接触的起重船船体表面产生的反向作用力。
2.2低频运动数学模型
依据式(1-4),简化后的起重船低频运动数学模型可以表示为[4]:
其中,起重船在固定坐标系中的位置(纵荡、横荡)和艏摇角度用 表示[4];起重船在随船坐标系中的速度(纵荡、横荡)和艏摇角速度用 表示; 为固定坐标系和随船坐标系的转化矩阵[4]; 为包含附加质量和附加惯性矩的惯性矩阵, 、 、 为起重船纵荡、横荡方向的附加质量和艏摇方向上的合力矩, 为船舶横荡和艏摇方向耦合而产生的附加质量, 为起重船绕 轴的附加转动惯量; 是严格正定的起重船流体动力导数矩阵,起重船各个方向上的流体动力导数用 、 、 、 、 表示; 为起重船自身推进系统产生的纵荡、横荡方向上的合力和艏摇方向的合力矩[4]。 matlab起重船动力定位系统滤波方法研究+源程序(3):http://www.751com.cn/zidonghua/lunwen_64409.html