can specify the main characteristics of the packing. Temperature,humidity ratio and specific flow rate are supplied for the air inlet.
Temperature, concentration and flow rate at the inlet are given as
regards the sorbent. The model computes the correspondent values
at the outlet and also provides an insight into the process down the
column. Thermodynamical, thermophysical, and transport proper-
ties of the desiccant H2O/LiBr were calculated in accordance with
@15–18#, whereas the properties of desiccant H2O/KCOOH were
computed in accordance with @12#. Figure 5 shows the comparison
between experimental and calculated air humidity change during
dehumidification tests, whereas Fig. 6 shows experimental versus
calculated solution concentration change during regeneration
tests. The simulation code reproduces dehumidification runs with
a mean absolute deviation of around 9.9% and regeneration tests
with a mean absolute deviation of around 16.4%. Therefore the
model reproduces the experimental data within their experimental
accuracy and it appears adequate to simulate the investigated pro-
cesses.
4 Conclusion
This paper presents the experimental tests on sorption dehu-
midification of air by liquid desiccant and desiccant regeneration
carried out in an absorption/desorption tower with random pack-
ing using the liquid desiccants H2O/LiBr and H2O/KCOOH.
The traditional solution H2O/LiBr presents better dehumidifica-
tion performance than new solution H2O/KCOOH which gives
better performance in regeneration tests. However the new solu-
tion H2O/KCOOH, less corrosive and expensive than traditional
desiccants, allows humidity reductions which are suitable for the
application to air conditioning or drying processes.
The comparison between experimental tests and a one-
dimensional simulation code of the absorption/desorption tower
shows a fair agreement.
The experimental data reported are useful for the design of
dehumidification systems providing information concerning a new
interesting desiccant, H2O/KCOOH摘要:本文介绍了实验测试空气通过液体干燥剂和带有散堆填料的吸收/解吸塔中的干燥剂再生进行化学除湿。该实验装置结合了测量,操作程序,数据缩减和准确性于一身。实验测试包括46除湿运行和38进行了与传统干燥剂再生运行吸湿溶液水/溴化锂和典型工作新的解决方案水/甲酸钾的空调应用范围。实验结果显示湿度降低,干燥剂浓度的变化,和塔效率方面的实验测试表明,空气通过液体干燥剂,确保化学除湿一致的降低湿度比,这是适合于应用到空调或干燥过程。实验结果进行比较,以一个一文填料塔的模拟代码:在实验和计算性能中达成共识。21204
论文网关键词:化学除湿、干燥剂、填料塔、再生干燥剂
1引言
空气通过液体干燥剂的吸附除湿能够替代传统的除湿。固体化学除湿液体干燥剂或允许一致的湿度降低和能源成本,由于干燥剂再生,可以完全通过适当的热回收减少。这个过程也是十分有利于降低空气微生物污染。化学除湿如今很少被运用到实际中。最普遍的系统是除湿轮,用固体吸附剂。而使用液态干燥剂除湿机作为填充柱吸收,似乎更有趣,因为他们允许热回收再生干燥剂。这些除湿单元可以有效地集成在创新暖通空调的植物,尤其是高潜热和通风负载或当一个较高的室内空气质量要求。本文作者为某教育机构和某传染病医院设计了一种基于化学暖通空调的植物。最近也有人提出一个创新的基于液体干燥剂除湿的暖通空调系统。基于液体干燥剂的除湿机自1935开始面市,并且已被用于各种工业空调系统。最近,在1997年,一种紧凑型空调系统,该系统包括一个除湿和再生单元集成了蓄热式热油泵,已经走进了市场。
- 上一篇:大型高压泵列车英文文献和翻译
- 下一篇:机器人平台英文文献和中文翻译
-
-
-
-
-
-
-
大众媒体对公共政策制定的影响
杂拟谷盗体内共生菌沃尔...
电站锅炉暖风器设计任务书
河岸冲刷和泥沙淤积的监测国内外研究现状
十二层带中心支撑钢结构...
当代大学生慈善意识研究+文献综述
酸性水汽提装置总汽提塔设计+CAD图纸
乳业同业并购式全产业链...
中考体育项目与体育教学合理结合的研究
java+mysql车辆管理系统的设计+源代码