REFERENCES
1. Bosch GmBH (1991), CAN Specification, Version 2.0, Stuttgart, www.bosch-semiconductors.de.
2. Farjoud A., Craft M., Burke W., Ahmadian M. (2011), Experimental investigation of MR squeeze mounts, Journal of Intelligent Material Systems and Structures, 22, 1645-1652.
3. Jolly M. R., Carlson J. D. (1996), Controllable Squeeze-film Damping using MR fluid, Proc. of Actuator, Bremen, Germany, 333−336.
4. Kamiński E., Pokorski J. (1983), Dynamics of automobile suspensions and drive systems, WKŁ, Warsow.
5. Kim J. H. (2012), Damping control device with magnetorheological fluid and engine mount having the same, United States Patent Application Publication US 2012/0132492A1.
6. Kim K. J., Lee Ch. W., Koo J. H. (2008), Design and modeling of semi-active squeeze film dampers using magnetorheological fluids, Smart Materials and Structures, 17, 035006, 12.
7. Phillip. A. Laplante (1997), Real-Time Systems Design and Analysis: An Engineer's Handbook, 2nd ed., 59.95, IEEE Press,. Piscataway, N.J., USA.
8. Rosół M, Sapiński B. (2014), Prototyping of a control system for a magnetorheological vibration isolator, Modelling in Engineering (to be published).
9. Sapiński B. (2013), Vibration isolator with MR fluid, Bulletin of Polish Patent Office, 17 (1034), 27.
10. Snamina J., Sapiński B. (2014), Analysis of an automotive vehicle
engine mount based on squeeze-mode MR damper, Journal
of Cracow University of Technology (to be published).
11. Stanway R., Sims N. D., Johnson A. R. (2000), Modelling
and control of a magnetorheological vibroisolator, Proc. of SPIE,
3989, 184−193.
12. Texas Instruments Inc. (2013), MSP430F5529 mixed signal microcontroller. Technical data, www.ti.com.
13. Zhang X. J., Farjud A., Ahmadian M., Guo K. H., Craft M. (2011), Dynamic Testing and Modelling of an MR Squeeze Mount, Journal of Intelligent Material Systems and Structures, 22, 1717-1728.
The work has been accomplished under the research project
摘要:挤压式磁(MR)隔振的自主控制系统是基于超低功耗单片机MSP430F5529。控制系统和专用实时系统的设计结构被简要的介绍和总结了实验室试验数据。
论文网关键词:流变减振器,控制系统,控制器
1.介绍
过去十年见证了挤压式磁流变减振器(VI-MRS)的重大进步(Farjoud et al., 2011; Kim et al., 2008; Zhang et al., 2011)。以前的大部分的研究已主要集中在理论研究,例如乔利和卡尔森(1996)和斯坦韦等(2000)这是值得一提的是,这些类型的VI-MRS的某些解决方案已获得专利(Kim, 2012; Sapiński, 2013).。
所研究的自动控制系统(ACS)被设计为用于原型挤压模式MR隔振(VI-MR)的控制。VI-MR意欲用作设计成在半主动发动机汽车装配系统中的致动元件,为了降低发动机的振动由于波动惯性力(由曲柄系统的不平衡元件所引起),为了变动发动机传递到驱动系统部件的驱动转矩和改变一些随机力的作用(Kamiński and Pokorski, 1983; Snamina and Sapiński, 2014)。