[6] T. Lieuwen, H. Torres, B. Zinn, A mechanism for combustion instabilities in premixed gas turbine engines, J. Eng. Gas Turbines Power 123 (1) (2001) 182– 189.
[7] T. Scarinci, C. Freeman, I. Day, Passive control of combustion instability in a low emission aero derivative gas turbine, Proc. ASME Turbo Expo 1 (2004) 487– 499.
[8] T. Claypole and N. Syred, Integration of swirl burners with furnaces for the combustion of low calorific value gases, in: International Conference on Combustion in Engineering, vol. 2, 1981, I. Mech. E. Conference publications, pp. 139–145.
[9] N. Syred, K. Dahmen, A. Styles, S. Najin, A review of combustion problems associated with low calorific value gases, J. Inst. Fuel 50 (1977) 195–207.
[10] A.K. Gupta, D.J. Lilley, N. Syred, Swirl Flows, Abacus Press, Tunbridge Wells, United Kingdom, 1984.
[11] D. Froud, T. O’Doherty, N. Syred, Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions, Combust. Flame 100 (3) (1995) 407–412.
[12] N. Syred, J. Beer, Combustion in swirling flows: a review, Combust. Flame 23 (1974) 143–201.
[13] N. Syred, A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Prog. Energy Combust. Syst. 32 (2) (2006) 93–161.
[14] Y. Al-Abdeli, A. Masri, Turbulent swirling natural gas flames: stability characteristics, unsteady behaviour and vortex breakdown, Combust. Sci. Technol. 179 (2007) 207–225.
[15] S. Candel, Combustion dynamics and control: progress and challenges, Proc. Combust. Inst. 29 (2002) 1–28.
[16] Y. Huang, V. Yang, Effect of swirl on combustion dynamics in a lean premixed swirl stabilized combustor, Proc. Combust. Inst. 30 (2) (2005) 1775–1782.
[17] A. Khalatov, N. Syred, Generation and alleviation of combustion instabilities in swirling flow, in: Advanced Combustion and Aerothermal Technologies, Proceedings of the NATO, UK, 2006, pp. 3-20.
[18] A. Sadiki, A. Maltsev, B. Wegner, F. Fleming, A. Kempf, J. Janicka, Unsteady methods (URANS and LES) for simulation of combustion systems, Int. J. Thermal Sci. 45 (8) (2006) 760–773.
[19] M. Freitag, M. Klein, M. Gregor, D. Geyer, C. Schneider, A. Dreizler, J. Janicka, Mixing analysis of a swirling recirculating flow using DNS and experimental data, Int. J. Heat Fluid Flow 27 (4) (2006) 636–643.
[20] L. Selle, L. Benoit, T. Poinsot, F. Nicoud, W. Krebs, Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner, Combust. Flame 145 (1-2) (2006) 194– 205.
[21] P. Jochmann P, Numerical simulation of a precessing vortex breakdown, Int. J. Heat Fluid Flow 27 (2006) 192–203.
[22] S. Roux, G. Lartigue, T. Poinsot, U. Meier, C. Bérat, Studies of mean and unsteady flow in a swirled combusator using experiments, acoustic analysis and large eddy simulations, Combust. Flame 141 (2005) 40–54.
[23] P. Davidson, Turbulence: An Introduction for Scientists and Engineers, Oxford University Press, United Kingdom, 2004.
[24] S. Pope, Turbulent Flows, Cambridge University Press, United Kingdom, 2000.