菜单
  

    y(t) + a1y(t − 1) + . . . + ana y(t − na)

    = b1u(t − 1) + . . . + bnb u(t − nb) + e(t) (1)

    with y(t) the  output  signal,  and  u(t)  the  input  signal of the model, and a1, a2, . . . , ana b1, b2, . . . , bnb unknown parameters. The use of these kinds of models in estimation and identification problems is essentially based on the argument that a least  squares  identification  criterion  is an optimization problem that is analytically    solvable.

    Since the white noise term e(t) here enters as a direct error in the difference equation, the model is often called an equation error model. The adjustable parameters in this case are:

    y1. (sim)

    8

    y1. (sim)

    8

    6 6

    4 4

    2 2

    0 0

    −2 −2

    −4 −4

    −6 −6

    100 200 300 400 500 600 700 800

    Time (sec)

    100 200 300 400 500 600 700 800

    Time (sec)

    Fig. 2. ARX modeled data (- - -) v/s actual data  (—)

    θ = [a1 . . . ana   b1 . . . bnb ]

    Fig. 3. ARMAX modeled data (- - -) v/s actual data (—)

    B(q) C(q)

    G(q, θ) = ; H(q, θ) =

    If we introduce

    A(q)

    A(q)

    A(q) = 1 + a1q−1 + . . . + a B(q) = 1 + b1q−1 + . . . + b

    We see that the model corresponds to

    B(q)

    q−na q−nb

    1

    The predictor for the ARMAX model can be obtained as

    yˆ(t|θ)  = B(q)u(t) + [1 − A(q)]y(t) (5)

    +[C(q) − 1]ε(t, θ)

    where

    G(q, θ) =

    A(q)

    ; H(q, θ) =

    A(q)

    ε(t, θ) = y(t) − yˆ(t|θ)

    Computing the predictor for the system above we get

    yˆ(t|θ) = B(q)u(t) + [1 − A(q)]y(t) (2)

    Now we introduce the vector

    ϕ(t) = [−y(t − 1) . . . − y(t − na)

    u(t − 1) . . . u(t − nb)]

    Then we can write the above equation in the following form

    yˆ(t|θ) = θT .ϕ(t) = ϕT (t).θ (3) The predictor is a scalar product between a known data

    In this case our regression vector would  be

    ϕ(t) = [−y(t − 1) . . . − y(t − na)

    u(t − 1) . . . u(t − nb)

    ε(t − 1, θ) . . . ε(t − nc, θ)]

    Fig. 3 displays the ARMAX modeled data versus  the actual  data.

    3.3 Box-Jenkins model

  1. 上一篇:对热流道系统注塑工艺英文文献和中文翻译
  2. 下一篇:数控车床附件的研究英文文献和中文翻译
  1. 流量测量系统英文文献和中文翻译

  2. 开口端纺纱系统中的锥形...

  3. 金属板料冲压模具计算机...

  4. 变频器在供水控制系统的...

  5. 计算机辅助工艺规划CAPP系...

  6. 气动定位系统英文文献和中文翻译

  7. 对热流道系统注塑工艺英文文献和中文翻译

  8. 酸性水汽提装置总汽提塔设计+CAD图纸

  9. 乳业同业并购式全产业链...

  10. 河岸冲刷和泥沙淤积的监测国内外研究现状

  11. 中考体育项目与体育教学合理结合的研究

  12. 大众媒体对公共政策制定的影响

  13. 当代大学生慈善意识研究+文献综述

  14. 电站锅炉暖风器设计任务书

  15. java+mysql车辆管理系统的设计+源代码

  16. 十二层带中心支撑钢结构...

  17. 杂拟谷盗体内共生菌沃尔...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回