菜单
  
    m  ny,nu

    p,m−p 1 m

    actual data.

    y(k) = . . .

    cp,m−p(n1, . . . , nm)

    4. LINEAR  IDENTIFICATION RESULTS

    With focus on the time-domain respresentation, the model identified using state space modeling is represented in the form of matrices as follows:

    where

    m=0 p=0 n1 ,nm p

    × Y y(k − ni)

    i=1

    m

    Y

    i=p+1

    u(k − ni) (10)

    Fig. 6. Simulation of (—) the system output pressure and (- -) the polynomial model with ℓ = 3

    Fig. 7. Comparison of fitness percentages using various linear and nonlinear  models

    the superiority of the NARMAX method over the linear identification methods in the parameters estimation     of

    ny,nu ny

    . ≡ .

    ny nu

    . . . . .

    (11)

    polynomial models of the prescribed hydraulic pumping system.

    n1 ,nm

    n1 =1 n2 =1

    nm=1

    The fitness level of the ARMAX modeled data was    found

    and the upper limit is ny if the summation refers to factors in y(k − ni) or nu for factors in u(k − ni). Assuming stability, then in steady–state for constant inputs we may

    to be the best as shown in Fig. 7 along with the nonlinear model. One possible reason is the influence of disturbance. Unlike the ARX model, the ARMAX model structure

    write y¯

    =  y(k − 1)  =  y(k − 3)  =  . . .  =  y(k − ny ),

    includes disturbance dynamics. ARMAX models are useful

    u¯  =  u(k − 1)  =  u(k − 2)  =  . . .  =  u(k − nu)  and  (10)

    when you have dominating disturbances that enter early in

    is rewritten as

    l

    m  ny,nu

    the process, such as at the input. The ARMAX model    has

    more flexibility in the handling of disturbance modeling than the ARX model. The Box-Jenkins (BJ) structure pro-

    y¯ = . . .

    cp,m−p(n1, . . . , nm)y¯pu¯m (12)

    vides a complete model with disturbance properties mod-

    m=0 p=0 n1 ,nm

    where constants .ny,nu   cp,m−p(n1, . . . , nm) are the coeffi-

    cients of the term clusters Ωypum−p , which contains terms of the form yp(k − i)um(k − j) for m + p ≤ l. Such coeffi- cients are called cluster coefficients and are represented as

    Σypum .

    If max[p] = 1 in the dynamical model (10), such a model is closely related to a Hammerstein type [10] and the steady– state output can be expressed as [11]:

    l

    eled separately from system dynamics. The Box-Jenkins model is useful when you have disturbances that enter late in the process. For example, measurement noise on the output is a disturbance late in the  process.

    6. CONCLUSION

    In this paper, linear and  nonlinear  identification  meth- ods have been closely examined for the purpose of pa- rameters estimation of polynomial models of a 15 kW hydraulic  pumping  system.  The  objective  has  been    to

    y¯ =

    .0 + .u u¯ + . . m

    (13)

    determine models with good performance in both  transient

    1 − .

  1. 上一篇:对热流道系统注塑工艺英文文献和中文翻译
  2. 下一篇:数控车床附件的研究英文文献和中文翻译
  1. 流量测量系统英文文献和中文翻译

  2. 开口端纺纱系统中的锥形...

  3. 金属板料冲压模具计算机...

  4. 变频器在供水控制系统的...

  5. 计算机辅助工艺规划CAPP系...

  6. 气动定位系统英文文献和中文翻译

  7. 对热流道系统注塑工艺英文文献和中文翻译

  8. 酸性水汽提装置总汽提塔设计+CAD图纸

  9. 乳业同业并购式全产业链...

  10. 河岸冲刷和泥沙淤积的监测国内外研究现状

  11. 中考体育项目与体育教学合理结合的研究

  12. 大众媒体对公共政策制定的影响

  13. 当代大学生慈善意识研究+文献综述

  14. 电站锅炉暖风器设计任务书

  15. java+mysql车辆管理系统的设计+源代码

  16. 十二层带中心支撑钢结构...

  17. 杂拟谷盗体内共生菌沃尔...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回