Fig. 6. Required BSG characteristic
the versatility of the test rig that is able to reproduce sev- eral kinds of transmissions, with different characteristics in terms of dimensions and performances. The actuation performed by means of two electric motors will allow the design of optimized control strategies for the reproduction of the realistic operating conditions of the mechanism. The test rig represents an advantageous tool for the analysis of the overall system if compared to a traditional engine cell. Not only the operating conditions are repeatabe but also the costs of the experimental tests are reduced.
The test rig is currently going through set up work and functional analysis in preparation for the experimental activities. The experiments will contemplate tests at con- stant speed imposed by the CS with varying torque re- quests from the BSG aimed at the complete validation of the model, the characterization of the slip phenomena at the contact surfaces of the pulleys and the power dissi- pation evaluation. Additional tests in dynamic conditions will be performed, simulating real operating conditions of crankshaft and BSG, for the evaluation of the natural frequencies of the transmission.
REFERENCES
Bechtel, S., Vohra, S., Jacob, K., and Carlson, C. (2000). The stretching and slipping of belts and fibers on pulleys. Journal of Applied mechanics, 67(1), 197–206. Cariccia, G., Licata, F., and NOE, E. (2013). Actuated tensioner for an accessory drive. WO Patent App.
PCT/IB2013/055,123.
Genta, G. and Morello, L. (2009). The automotive chas- sis: Volume 2: System design (mechanical engineering series).
Hansson, H. (1990). Geometry conditions for good power capacity in a v-ribbed belt drive. Journal of Mechanical Design, 112(3), 437–441.
Hwang, S.J., Perkins, N., Ulsoy, A., and Meckstroth, R. (1994). Rotational response and slip prediction of serpentine belt drive systems. Journal of Vibration and Acoustics, 116(1), 71–78.
Kong, L. and Parker, R.G. (2003). Equilibrium and belt-pulley vibration coupling in serpentine belt drives. Journal of Applied Mechanics, 70(5), 739–750.
摘 要: 在传统的发动机设置中,皮带传动系统(BDS)负责从曲轴到附件的功率传输。它们是复杂和关键的动态机制,涉及接触力学和振动现象。车辆的混合动力已经增加了这些系统操作条件的严重性,这些操作条件变得更加关键。传统的交流发电机由带式起动发电机(BSG)代替,该带式起动发电机是在特定操作条件下为BDS提供动力以改善内燃发动机(ICE)性能或允许再生制动的电机。本试验的目的是描述一个试验设备的设计和主要特性,该试验设备用于实验室环境中研究带驱动系统在动态条件下的行为。两个永磁电动机用于现实、可控和可复原的方式复制曲轴和BSG的动态行为。论文网
关键词︰汽车控制、混合动力车、皮带驱动系统、动态建模、前端配套驱动器、 基于模型的控制
1.介绍
皮带驱动系统(BDS)或前端附件驱动(FEAD)构成传统的动力传动机构,为内燃机,如交流发电机,水泵和空气调节泵提供动力。由内燃机(ICE)产生的扭矩通过蛇形带传输,该蛇形带缠绕在驱动系统的驱动和从动附件滑轮上。
由于需要满足性能规范,BDS传统上代表复杂和关键的车辆子系统。它通常在发动机舱的严酷环境条件下,并受到来自曲轴谐波的高动态激励。这些谐波激励与附件(主要是交流发电机)的惯性一起导致皮带的振动和可能导致打滑和噪声的高张力波动。为了减少这些激励,人们已经开发了许多解决方案,包括去耦合,过滤和超速滑轮。对这些现象的分析产生了皮带轮接触力学精细模型的发展以及蛇形多滑轮模型的定义,以预测蛇形带驱动系统的动态响应。文献综述表明,进行了几个研究活动,分别解决皮带轮机构,见Bechtel 等人(2000),Rubin(2000),Hansson(1990),以及传输系统的动态行为,参见Ulsoy 等人(1985),Hwang 等人(1994),Leamy和Perkins(1998)。在过去10年中,Leamy和Wasfy(2002),Leamy(2003),Kong和Parker(2003)在接触力学研究和动态分析之间的差距很小。 Tonoli等人(2006)分析了带的剪切变形对变速器的旋转动态特性的影响。